Effect of metal oxides on reaction route and product distribution of catalytic cellulose hydrogenolysis

Author:

Fan Guifang1,Chen De2,Li Shizhong1,Yang Mingde1,Wu Yulong1

Affiliation:

1. Tsinghua University

2. Norwegian University of Science and Technology

Abstract

The effects of CeO2, ZrO2, Nb2O5, and ZnO catalysts supported on carbon nanotubes (CNT) relative to cellulose hydrothermal hydrogenolysis in the presence of Ni/CNT and pressured H2 was studied in this work. The catalysts were characterized by inductively coupled plasma – optical emission spectrometry, X-ray diffraction, X-ray photoelectron spectrometry, transmission electron microscopy, NH3 temperature programmed desorption (TPD), and CO2-TPD. Glucose and its isomers were detected by mass spectrometry. The results showed that redox active CeO2/CNT with strong Lewis acid and strong Lewis base sites was active in C-C bong cracking, isomerization, dehydrogenation, and hydrodeoxygenation reaction, yielding 36.3% ethylene glycol and 17.2% 1,2-propylene glycol. The ZnO/CNT with Bronsted base accelerated isomerization, retro-aldol condensation, and dehydrogenation, yielding 20.7% 1,2-propylene glycol, 17.8% ethylene glycol, and 12.7% tetrahydrofuran dimethanol. The Nb2O5/CNT and ZrO2/CNT were inert to C-C bond cracking, whereas H+ in hot compressed water and the Bronsted acid in Nb2O5/CNT accelerated dehydration, yielding more sorbitol and sorbitans. The results provide reference for catalyst selection and product regulation in cellulose hydrogenolysis.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3