Exploring natural palm fiber’s mechanical performance using multi-scale fractal structure simulation

Author:

Wang Yuehan1,Zhang Tonghua1,Jing Lingxiao1,Deng Penghu1,Zhao Shumi2,Guan Dong3

Affiliation:

1. Southwest University

2. The Hong Kong Polytechnic University

3. Yangzhou University

Abstract

Palm fiber, a type of natural multicellular fiber, exhibits distinct mechanical properties, such as excellent elasticity, higher fracture energy, and desirable stretch ability. To reveal the structure-property relationship, a multi-scale layered fractal theoretical model was introduced to investigate the tensile behavior of palm fibers at different scales. A three-circle model was established and used to simulate the hierarchical organization of palm fibers. The palm fibers consisted of cellulose molecular chains, fibril filaments, microfibrils, and cells. Moreover, the characteristics of stress, fracture energy, and Young’s modulus on different scales were calculated and verified by tensile testing and atomic force microscopy (AFM). The results revealed that the fractal model effectively decoupled the contributions of different scales to the tensile properties. In particular, the microfibril mainly influenced the stiffness, whereas the cell determined the toughness of palm fibers. The findings of the current study can be utilized to improve the design and preparation of fiber-based nanomaterials.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3