Effect of wood particle size on selected properties of neat and recycled wood polypropylene composites

Author:

Çavuş Vedat1,Mengeloğlu Fatih2

Affiliation:

1. Izmir Katip Celebi University

2. Kahramanmaraş Sütçü İmam University

Abstract

Neat polypropylene (PP)- and post-industrial recycled polypropylene (rPP)-based wood-plastic composites (WPC) were manufactured using 40% mahogany wood flour (WF). The effect of particle size (0.074 to 0.149 mm, 0.177 to 0.250 mm, and 0.400 to 0.841 mm) on the selected properties of PP and rPP composites was studied. The influence of 3% maleic anhydride grafted polypropylene (MAPP) presence in the formulation was also evaluated. Test specimens were manufactured using a combination of extrusion and injection molding processes. The density and mechanical properties, such as flexural strength, flexural modulus, tensile strength, tensile modulus, elongation at break, hardness and impact strength values were determined. Morphology of the manufactured composites was also studied using scanning electron microscopy (SEM) analysis. Results showed that the particle size, polypropylene type (neat or recycled), and presence of MAPP had important effects on WPC’s properties. Density, flexural modulus, tensile modulus, and impact strength values increased with decreased particle size regardless of the presence of MAPP. Flexural strength values increased with decreased particle size without MAPP. Regardless of particle size, addition of MAPP in composites provided higher flexural strength, flexural modulus, tensile strength, and tensile modulus values but lower elongation at break values compared to composites without MAPP.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3