Coupling model of fuzzy soft set and Bayesian method to forecast internal defects of ancient wooden structures based on nondestructive test

Author:

Wang Ziyi1,Wang Wei1,Ma Donghui1,Guo Xiaodong1,Huan Junhong1,Cheng Liting1

Affiliation:

1. Beijing University of Technology

Abstract

In order to improve the detection precision of internal defect in the ancient wooden structures, defect simulation tests on pine and elm commonly used in ancient buildings were performed by using stress wave detection and drilling resistance detection. Based on detection data, three typical evaluation criteria, which are the information entropy, the correlation coefficient, and residual sum of squares, were selected as a priori information. Combining with the expert’s fuzzy evaluation value, Bayesian formula was used to modify the prior information to determine the weight coefficients of the two detection methods, and a combined prediction model was established. The results show that the combination of subjectivity and objectivity enables the revised weights to more reasonably and accurately reflect the relative importance of each detection method in prediction evaluation, which reduces the forecasting error. Specifically speaking, the mean error of the combined model was reduced by 49.8% and 59.8%, respectively, compared with stress wave detection and drilling resistance detection. Moreover, the five error indicators of this combined forecasting model are the smallest in all methods, indicating the proposed method has a better forecasting effect. It provides an effective application tool for the practice of forecasting the internal defects of wooden components in ancient buildings.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3