Left ventricular function measurements in a mouse myocardial infarction model

Author:

Hendrikx Geert,Bauwens Matthias,Wierts Roel,Post Mark,Mottaghy Felix

Abstract

SummaryAim: To assess the accuracy of ECG-gated micro (µ)-SPECT in a mouse myocardial infarction (MI) model in comparison to 3D-echocardiography. Animals, methods: In a mouse (Swiss mice) MI model we compared the accuracy of technetium-99m sestamibi (99mTc-sestamibi) myocardial perfusion, electrocardiogram (ECG) gated µSPECT to 3D-echocardiography in determining left ventricular function. 3D-echocardiography and myocardial perfusion ECG-gated µSPECT data were acquired in the same animal at baseline (n = 11) and 7 (n = 8) and 35 (n = 9) days post ligation of the left anterior descending coronary artery (LAD). Sham operated mice were used as a control (8, 6 and 7 mice respectively). Additionally, after day 35 µSPECT scans, hearts were harvested and 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) staining and autoradiography was performed to determine infarct size. Results: In both infarcted and sham-operated mice we consistently found comparable values for the end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) obtained by 3D-echocardiography and ECG-gated µSPECT. Excellent correlations between measurements from 3D-echocardiography and ECG-gated µSPECT were found for EDV, ESV and EF (r = 0.9532, r = 0.9693 respectively and r = 0.9581) in infarcted mice. Furthermore, comparable infarct size values were found at day 35 post MI by TTC staining and autoradiography (27.71 ± 1.80% and 29.20 ± 1.18% with p = 0.43). Conclusion: We have demonstrated that ECG-gated µSPECT imaging provides reliable left ventricular function measurements in a mouse MI model. Obtained results were comparable to the highly accurate 3D-echocardiography. This, in addition to the opportunity to simultaneously image multiple biological processes during a single acquisition makes µSPECT imaging a serious option for studying cardiovascular disease in small animals.

Publisher

Georg Thieme Verlag KG

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3