18F, 11C and 68Ga in small animal PET imaging

Author:

Muellauer J.,Willimayer R.,Goertzen A. L.,Wanek T.,Langer O.,Birkfellner W.,Kuntner C.

Abstract

Summary Aim: The partial volume effect (PVE) significantly affects quantitative accuracy in PET. In this study we used a micro-hollow sphere phantom filled with 18F, 11C or 68Ga to evaluate different partial volume correction methods (PVC). Additionally, phantom data were applied on rat brain scans to evaluate PVC methods on in vivo datasets. Methods: The four spheres (7.81, 6.17, 5.02, 3.90 mm inner diameter) and the background region were filled to give sphere-to-background (sph/bg) activity ratios of 20 : 1, 10 : 1, 5 : 1 and 2 : 1. Two different acquisition and reconstruction protocols and three radionuclides were evaluated using a small animal PET scanner. From the obtained images the recovery coefficients (RC) and contrast recovery coefficients (CRC) for the different sph/bg ratios were calculated. Three methods for PVC were evaluated: a RC based, a CRC based and a volume of interest (VOI) based method. The most suitable PVC methods were applied to in vivo rat brain data. Results: RCs were shown to be dependent on the radionuclide used, with the highest values for 18F, followed by 11C and 68Ga. The calculated mean CRCs were generally lower than the corresponding mean RCs. Application of the different PVC methods to rat brain data led to a strong increase in time-activity curves for the smallest brain region (entorhinal cortex), whereas the lowest increase was obtained for the largest brain region (cerebellum). Conclusion: This study was able to show the importance and impact of PVE and the limitations of several PVC methods when performing quantitative measurements in small structures.

Publisher

Georg Thieme Verlag KG

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3