Kinetic analysis of experimental rabbit tumour and inflammation model with 18F-FDG PET/CT

Author:

Huang G.,Dong S.,Wan L.,Liu P.

Abstract

SummaryNon-specific accumulation of 18F-FDG by both tumour and inflammatory lesions can make diagnostic analysis difficult. Our aim was to explore the difference in 18F-FDG uptake kinetics between tumour and inflammatory cells. To this end, we investigated VX2 tumour lesions and inflammatory lesions in rabbits. Methods: Six rabbits with VX2 tumour cells transplanted into one forelimb muscle and inflammatory lesions induced by turpentine oil in the contralateral forelimb were scanned for 60 minutes post 18F-FDG injection. Imaging data was analyzed with the standard 2-tissue-compartment model. Parameters, VB, Ki, K1, k2, k3, k4, were compared between tumour and inflammatory lesions. SUV and dual time scan methods were also compared in the experiment. Results: Time activity curves of VX2 tumour lesions showed a characteristic pattern of gradually increasing 18F-FDG uptake up to 60 min, whereas, 18F-FDG uptake in inflammatory lesions increased more slowly than in tumours. Parameters estimated from the uptake process showed that forward transport constant, K1, and influx constant, Ki, values in VX2 tumour lesions (0.186 ± 0.053 and 0.048 ± 0.014, respectively) was significantly higher than that in inflammatory lesions (0.129 ± 0.024 and 0.022 ± 0.007, respectively) (p < 0.05). In contrast, mean values of VB, k2, k3 and k4 derived from VX2 tumours were not significantly different from that of inflammatory lesions. SUVs at 60 minutes post 18F-FDG injection were also significantly higher in the VX2 tumor lesions than in the inflammatory lesions. Retention index (RI) was not significantly different between VX2 tumours and inflammatory lesions (1.134 ± 0.076 vs. 1.060 ± 0.058, p > 0.05). Conclusion: Different kinetic parameters (Ki, K1, k3) exist between inflammatory and tumour lesions.

Publisher

Georg Thieme Verlag KG

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3