Oxyurichthys omanensis sp. nov., a new Eyebrow Goby (Teleostei: Gobiidae) from Oman

Author:

ZAREI FATAHORCID,JUFAILI SAUD M. ALORCID,ESMAEILI HAMID REZAORCID

Abstract

Oxyurichthys omanensis sp. nov. is described as a new gobiid species from a mudflat/estuary habitat in northern Oman. The new species is diagnosed among all currently recognised congeners by the following combination of character states: elongate tentacle on dorsoposterior surface of the eye; nape with well-developed membranous crest; nape scaled to above anterior half of opercle along sides with naked median along membranous crest, scales never reaching to above preopercle; opercle and pectoral base naked; scales ctenoid laterally on trunk posterior to base of second dorsal fin 3rd element; lateral scale rows 51–58, usually 51–56; transverse forward scale rows 23–29, usually 24–28; transverse rearward scale rows 14–16, usually 14–15; upper lip usually constricted at premaxillary symphysis; infraorbital transverse papillae row 2 reaching eye margin dorsally and markedly short of longitudinal row d ventrally; additional short transverse papillae rows between rows 2 and 3i present; dark saddle present over caudal peduncle; snout length 34.9–45.4% HL; second dorsal-fin longest ray 1.1–1.6 head depth; pelvic fin always reaching or passing anal-fin origin. The K2P genetic distances (%) in the mtDNA COI barcode region between O. omanensis and the other Oxyurichthys species were all high (11.2–30.6%) with the K2P nearest neighbor distance of 11.2% to O. cornutus and O. ophthalmonema.  

Publisher

Magnolia Press

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference2 articles.

1.

Akihito, Prince, Hayashi, M. & Yoshino, T. (1984) Suborder Gobioidei. In: Masuda, H., Amaoka, K., Araga, C., Uyeno, T. & Yoshino, T. (Eds.), The fishes of the Japanese Archipelago. Tokai University Press, Tokyo, pp. 236–289, pls. 235–355.
Baldwin, C.C., Mounts, J.H., Smith, D.G. & Weigt, L.A. (2009) Genetic identification and color descriptions of early life history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa, 26, 1–22. https://doi.org/10.5281/zenodo.185742
Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T.A. (1992) Single-locus and multilocus DNA fingerprinting. In: Hoezel, C. (Ed.), Molecular genetics analysis of populations: a practical approach. Oxford University Press, New York, pp. 225–269.
Chang, C.H., Shao, K.T., Lin, H.Y., Chiu, Y.C., Lee, M.Y., Liu, S.H. & Lin, P.L. (2017) DNA barcodes of the native ray-finned fishes in Taiwan. Molecular Ecology Resources, 17, 796–805. https://doi.org/10.1111/1755-0998.12601
Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
Froese, R. & Pauly, D. (2022) FishBase. Available from: www.fishbase.org. (accessed 12 February 2022)
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29
Isari, S., Pearman, J.K., Casas, L., Michell, C.T., Curdia, J., Berumen, M.L. & Irigoien, X. (2017) Exploring the larval fish community of the central Red Sea with an integrated morphological and molecular approach. PloS one, 12, e0182503. https://doi.org/10.1371/journal.pone.0182503
Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov Chain Monte Carlo. Bioinformatics, 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
Miller, P.J. (1986) Gobiidae. In: Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J. & Tortonese, E. (Eds.), Fishes of the North-eastern Atlantic and the Mediterranean. Vol. 3. UNESCO, Paris, pp. 1019–1085. https://doi.org/10.2307/1444931
Miller, P.J. (2003) The freshwater fishes of Europe. Vol. 8/I Mugilidae, Atherinidae, Atherinopsidae, Blenniidae, Odontobutidae, Gobiidae 1. AULA-Verlag GmbH, Wiebelsheim and Verlag fur Wissenschaft und Forschung, Berlin, XII + 404 pp.
Pezold, F.L. & Larson, H.K. (2015) A revision of the fish genus Oxyurichthys (Gobioidei: Gobiidae) with descriptions of four new species. Zootaxa, 3988 (1), 1–95. https://doi.org/10.11646/ZOOTAXA.3988.1.1
Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
Rathnasuriya, M.I.G., Mateos-Rivera, A., Skern-Mauritzen, R., Wimalasiri, H.B.U., Jayasinghe, R.P.P.K., Krakstad, J.O. & Dalpadado, P. (2021) Composition and diversity of larval fish in the Indian Ocean using morphological and molecular methods. Marine Biodiversity, 51, 1–15. https://doi.org/10.1007/s12526-021-01169-w
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
Sanzo, L. (1911) Distribuzione delle papille cutanee (organi ciatiformi) e suo valore sistematico nei Gobi. Mittheilungen aus der Zoologischen Station zu Neapel, 20, 251–328.
Schliewen, U.K. & Kovačić, M. (2008) Didogobius amicuscaridis spec. nov. and D. wirtzi spec. nov., two new species of symbiotic gobiid fish from São Tomé and Cape Verde islands. Spixiana, 31, 247–261.
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
Steinke, D., Connell, A.D. & Hebert, P.D. (2016) Linking adults and immatures of South African marine fishes. Genome, 59, 959–967. https://doi.org/10.1139/gen-2015-0212
Thu, P.T., Huang, W.C., Chou, T.K., Van Quan, N., Van Chien, P., Li, F., Shao, K.T. & Liao, T.Y. (2019) DNA barcoding of coastal ray-finned fishes in Vietnam. PloS one, 14, e0222631. https://doi.org/10.1371/journal.pone.0222631
Viswambharan, D., Pavan-Kumar, A., Singh, D.P., Jaiswar, A.K., Chakraborty, S.K., Nair, J.R. & Lakra, W.S. (2015) DNA barcoding of gobiid fishes (Perciformes, Gobioidei). Mitochondrial DNA, 26, 15–19.
https://doi.org/10.3109/19401736.2013.834438
Xia, X. (2018) DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 35, 1550–1552. https://doi.org/10.1093/molbev/msy073
Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3
Zarei, F., Esmaeili, H.R., Schliewen, U.K., Abbasi, K. & Sayyadzadeh, G. (2021) Mitochondrial phylogeny, diversity, and ichthyogeography of gobies (Teleostei: Gobiidae) from the oldest and deepest Caspian sub-basin and tracing source and spread pattern of an introduced Rhinogobius species at the tricontinental crossroad. Hydrobiologia, 848, 1267–1293. https://doi.org/10.1007/s10750-021-04521-0
Zhang, J. & Hanner, R. (2012) Molecular approach to the identification of fish in the South China Sea. PLoS one, 7, e30621.
https://doi.org/10.1371/journal.pone.0030621
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499

2.

 

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3