Morphological differentiation in giant salamanders, Andrias japonicus, A. davidianus, and their hybrids (Urodela, Cryptobranchidae), and its taxonomic implications

Author:

HARA SOTAROORCID,NISHIKAWA KANTOORCID,MATSUI MASAFUMIORCID,YOSHIMURA MASAKOORCID

Abstract

For a long time, it has been debated whether the two giant salamanders, Andrias japonicus from Japan and A. davidianus from China, are conspecific or heterospecific. Morphological information about their diagnostic characteristics has been limited, without considering sexual dimorphism and/or body size variation. Recently, A. davidianus, which was introduced into Japan sometime in the past, has been found to hybridize with A. japonicus in situ. Taxonomic identification of individuals involved in this unusual breeding is made based on mitochondrial and nuclear DNA analyses. This identification method is time-consuming and costly. Thus, developing easier methods of identification, such as utilizing external morphological characteristics, is urgently needed. In this study, we verify previous descriptions showing that A. davidianus has a longer relative tail length than A. japonicus, and the tubercles on the lower jaw and throat were present in both sexes of A. davidianus. In addition, many head characteristics were found to be relatively larger in A. davidianus than in A. japonicus, which were new distinguishing characters. These morphological differences help support the idea that these are heterospecific lineages. In hybrids, relative values of head width and tail length were larger than those of A. japonicus, and the tubercles on their lower jaw and throat were present as in A. davidianus, suggesting that the hybrids and A. davidianus are distinguishable from A. japonicus.  

Publisher

Magnolia Press

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference36 articles.

1. Allendorf, F.W., Leary, R.F., Spruell, P. & Wenburg, J.K. (2001) The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution, 16, 613–622. https://doi.org/10.1016/S0169-5347(01)02290-X

2. Anderson, E.C. & Thompson, E.A. (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics, 160, 1217–1229. https://doi.org/10.1093/genetics/160.3.1217

3. Blanchard, É. (1871) Note sur une nouvelle Salamandre gigantesque (Sieboldia Davidiana Blanch.) de la Chine occidentale. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 73, 79–80.

4. Boulenger, E.G. (1924) On a new giant salamander, living in the Society’s gardens. Proceedings of the Zoological Society of London, 1924, 173–174. https://doi.org/10.1111/j.1096-3642.1924.tb01494.x

5. Browne, R.K., Li, H., Wang, Z., Okada, S., Hime, P., McMillan, A., Wu, M., Diaz, D., Mcginnity, D. & Briggler, J.T. (2014) The giant salamanders (Cryptobranchidae): Part B. Biogeography, ecology and reproduction. Amphibian and Reptile Conservation, 5, 30–50.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3