Low morphological and genetic variation within the glass-perchlet Parambassis siamensis (Teleostei: Ambassidae) in Peninsular Malaysia

Author:

GHAZALI SITI ZAFIRAHORCID,LAVOUÉ SÉBASTIENORCID,ZAIN KHAIRONIZAM MD.ORCID,JAMALUDDIN JAMSARI AMIRUL FIRDAUSORCID,AHMAD AMIRRUDINORCID,RATMUANGKHWANG SAHATORCID,NOR SITI AZIZAH MOHDORCID

Abstract

We compare several populations of the glass-perchlet Parambassis siamensis (Fowler 1937) (Teleostei: Ambassidae) sampled throughout Peninsular Malaysia to determine their degree of differentiation, using both morphological and molecular characters. Our morphological analyses do not show evidence for the presence of more than one species, with the range of morphometric and meristic characters overlapping among populations. Our genetic analysis using partial sequences of the mitochondrial gene coding for the protein cytochrome c oxidase I (COI) reveals the existence of two clades that diverge from each other by a minimum uncorrected p-distance of 2.2%. The first clade comprises of specimens from south-eastern Peninsular Malaysia (Pahang and Endau-Rompin River basins) along with those from Cambodia (lower Mekong River). The second clade comprises of specimens from western Peninsular Malaysia (Selangor, Kurau, Perak, Muda and Kerian River basins) and north-eastern Peninsular Malaysia (Terengganu River basin), along with those from Chao Phraya River basin nearby Bangkok (type locality of P. siamensis). The presence of specimens with numerous melanophores on body sides in each of these two clades indicates that body marking pattern is not a valuable taxonomic character. This finding supports the conclusion that Chanda punctulata Fraser-Brunner 1955 is a junior synonym of P. siamensis. Altogether, our results support the hypothesis that all populations of P. siamensis in Peninsular Malaysia (along those from Chao Phraya and lower Mekong basins) are conspecific, comprising two genetically distinct, although close lineages. We further discuss the phenotypic plasticity within P. siamensis in relation to lotic and lentic habitats. Finally, we briefly discuss some implications for biogeography and possible causes explaining the distribution pattern.  

Publisher

Magnolia Press

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference1 articles.

1.

Allen, R.G. & Burgess, E.W. (1990) A review of the glassfishes (Chandidae) of Australia and New Guinea. Records of the Western Australian Museum, 34, 139–206.
Alshari, N.F.M.A.H., Lavoué, S., Mohamad Sulaiman, M.A., Khaironizam, M.Z., Mohd Nor, S.A. & Aziz, F. (2021) Pleistocene paleodrainages explain the phylogeographic structure of Malaysian populations of Asian arowana better than their chromatic variation. Endangered Species Research, 46, 205–214. https://doi.org/10.3354/esr01152
Armbruster, J.W. (2012) Standardized measurements, landmarks, and meristic counts for cypriniform fishes. Zootaxa, 3586 (1), 8–16. https://doi.org/10.11646/zootaxa.3586.1.3
Bandelt, H.J., Forster, P. & Rohl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16 (1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Bohlen, J., Dvořák, T., Šlechta, V. & Šlechtová, V. (2020) Sea water shaping the freshwater biota: Hidden diversity and biogeographic history in the Paracanthocobitis zonalternans species complex (Teleostei: Nemacheilidae) in western Southeast Asia. Molecular phylogenetics and evolution, 148, 106806. https://doi.org/10.1016/j.ympev.2020.106806
Bolotov, I.N., Konopleva, E.S., Vikhrev, I.V., Gofarov, M.Y., Lopes-Lima, M., Bogan, A.E., Lunn, Z., Chan, N., Win, T., Aksenova, O.V. & Tomilova, A.A. (2020) New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. Scientific Reports, 10 (1), 1–22. https://doi.org/10.1038/s41598-020-63612-5
Chen, C. & Kuo, S. (2009) Feeding ecology of the exotic glass fish (Parambassis siamensis) in Sun Moon Lake. Endemic Species Research, 11 (2), 31–46.
Dunn, N.R., O’Brien, L.K., Burridge, C.P. & Closs, G.P. (2020) Morphological convergence and divergence in galaxias fishes in lentic and lotic habitats. Diversity, 12 (5), 13–16. https://doi.org/10.3390/D12050183
Foster, K., Bower, L. & Piller, K. (2015) Getting in shape: Habitat-based morphological divergence for two sympatric fishes. Biological Journal of the Linnean Society, 114 (1), 152–162. https://doi.org/10.1111/bij.12413
Fowler, H.W. (1937) Zoological Results of the Third de Schauensee Siamese Expedition. Part VIII: Fishes Obtained in 1936. Proceedings of the Academy of Natural Sciences of Philadelphia, 89 (125), 125–264. https://doi.org/10.1016/j.ajhg.2008.02.013
Fraser-Brunner, A. (1955) A synopsis of the centropomid fishes of the subfamily Chandinae, with descriptions of a new genus and two new species. The Raffles Bulletin of Zoology, 25, 185–213.
Franssen, N.R. (2011) Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish. Evolutionary Applications, 4, 791–804. https://doi.org/10.1111/j.1752-4571.2011.00200.x
Gaston, K.A. & Lauer, T.E. (2015) Morphometric variation in bluegill Lepomis macrochirus and green sunfish Lepomis cyanellus in lentic and lotic systems. Journal of Fish Biology, 86 (1), 317–332. https://doi.org/10.1111/jfb.12581
Grewe, P.M., Krueger, C.C., Aquadro, C.F., Bermingham, E., Kincaid, H.L. & May, B. (1993) Mitochondrial DNA variation among lake trout (Salvelinus namaycush) strains stocked into Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 50 (11), 2397–2403. https://doi.org/10.1139/f93-264
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series, 41, 95–98. https://doi.org/10.1039/c7qi00394c
Hammer, Ø., Harper, D.A.T. & Ryan, P. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1), 1–9.
Hedianto, D.A. & Kartamihardja, E.S. (2016) Karakteristik Biologi dan Dampak Introduksi Ikan Kaca (Parambassis siamensis, Fowler 1937) di Danau Toba. Prosiding Forum Nasional Pemulihan Dan Konservasi Sumberdaya Ikan, 5, 139–152. [in Indonesian]
Jamaluddin, J.A.F., So, N., Tam, B.M., Ahmad, A., Grudpan, C., Page, L.M., Khaironizam, M.Z. & Mohd Nor, S.A. (2019) Genetic variation, demographic history and phylogeography of tire track eel, Mastacembelus favus (Synbranchiformes: Mastacembelidae) in Southeast Asia. Hydrobiologia, 838 (1), 163–182. https://doi.org/10.1007/s10750-019-03987-3
Kartamihardja, E.S., Hedianto, D.A. & Umar, C. (2015) Strategi Pemulihan Sumber Daya Ikan Bilih (Mystacoleucus padangensis) dan Pengendalian Ikan Kaca (Parambassis siamensis) di Danau Toba, Sumatera Utara. Jurnal Kebijakan Perikanan Indonesia, 7 (2), 63. [in Indonesian] https://doi.org/10.15578/jkpi.7.2.2015.63-69
Koizumi, N., Morioka, S., Quinn, T.W., Mori, A., Vongvichith, B., Nishida, K., Watabe, K. & Takemura, T. (2012) Isolation and characterization of 40 polymorphic microsatellite markers from Parambassis siamensis. Conservation Genetics Resources, 4 (4), 1031–1035 https://doi.org/10.1007/s12686-012-9700-z
Kottelat, M. (2016) The fishes of the Nam Theun and Xe Bangfai drainages, Laos. Hydroécologie Appliquée, 19, 271–320. https://doi.org/10.1051/hydro/2015005
Kottelat, M. & Whitten, A.J. (1996) Freshwater Fishes of Western Indonesia and Sulawesi: Additions and Corrections. Published by the authors, Hong Kong, 8 pp. [ISBN 962-593-148-1]
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874. https://doi.org/10.1093/molbev/msw054
Kwik, J.T.B., Kho, Z.Y., Quek, B.S., Tan, H.H. & Yeo, D.C.J. (2013) Urban stormwater ponds in Singapore: Potential pathways for spread of alien freshwater fishes. BioInvasions Records, 2 (3), 239–245. https://doi.org/10.3391/bir.2013.2.3.11
Langerhans, R.B. (2008) Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology, 48, 750–768. https://doi.org/10.1093/icb/icn092
Leigh, J.W. & Bryant, D. (2015) POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, 2010, pp. 1–8.
Morioka, S. & Vongvichith, B. (2020) Importance of resources of small-sized fishes as fundamental components of food resources and fish diversity in Lao PDR. In: Morioka, S., & Hasada, K. (Eds.), Potential and Efficiency of Underused Agricultural and Fishery Resources in Laos, JIRCAS Working Report, 90, 117–125.
Nazia, A.K., Suzana, M., Azhar, H., Nguyen Thuy, T.T. & Siti Azizah, M.N. (2010) No genetic differentiation between geographically isolated populations of Clarias macrocephalus Günther in Malaysia revealed by sequences of mtDNA Cytochrome b and D-loop gene regions. Journal of Applied Ichthyology, 26 (4), 568–570. https://doi.org/10.1111/j.1439-0426.2010.01469.x
Ng, C. (2016) The ornamental freshwater fish trade in Malaysia. UTAR Agriculture Science Journal (UASJ), 2 (4).
Ng, H.H. & Tan, H.H. (2010) An Annotated Checklist of the Non-Native Freshwater Fish Species in the Reservoirs of Singapore. Cosmos, 6 (01), 95–116. https://doi.org/10.1142/s0219607710000504
Ng, C.K.-C., Ooi, P.A.-C., Wong, W. & Khoo, G. (2017) An overview of the status, trends and challenges of freshwater fish research and conservation in Malaysia. Journal of Survey in Fisheries Sciences, 3 (2), 7–21. https://doi.org/10.18331/sfs2017.3.2.2
Okutsu, T., Morioka, S., Shinji, J. & Chanthasone, P. (2011) Growth and reproduction of the glassperch Parambassis siamensis (Teleostei: Ambassidae) in Central Laos. Ichthyological Exploration of Freshwaters, 22 (2), 97–106.
Roberts, T.R. (1995) Systematic revision of tropical Asian freshwater glassperches (Ambassidae), with descriptions of three new species. Natural History Bulletin of the Siam Society, 42, 263–290.
Rodgers, G.M., Kelley, J.L. & Morrell, L.J. (2010) Colour change and assortment in the western rainbowfish. Animal Behaviour, 79 (5), 1025–1030. https://doi.org/10.1016/j.anbehav.2010.01.017
Pavlidis, M., Karkana, M., Fanouraki, E. & Papandroulakis, N. (2008) Environmental control of skin colour in the red porgy, Pagrus pagrus. Aquaculture research, 39 (8), 837–849. https://doi.org/10.1111/j.1365-2109.2008.01937.x
Sathiamurthy, E. & Voris, H.K. (2006) Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. Natural History Journal of Chulalongkorn University, Supplement 2, 1−43.
Sholihah, A., Delrieu-Trottin, E., Sukmono, T., Dahruddin, H., Pouzadoux, J., Tilak, M., Fitriana, Y., Agnèse, J., Condamine, F.L., Wowor, D., Rüber, L. & Hubert, N. (2021) Limited dispersal and in situ diversification drive the evolutionary history of Rasborinae fishes in Sundaland. Journal of Biogeography, 48, 2153–2173. https://doi.org/10.1111/jbi.14141
Siriwong, W., Thirakhupt, K., Sitticharoenchai, D., Rohitrattana, J., Thongkongowm, P., Borjan, M. & Robson, M. (2009) DDT and derivatives in indicator species of the aquatic food web of Rangsit agricultural area, Central Thailand. Ecological Indicators, 9 (5), 878–882. https://doi.org/10.1016/j.ecolind.2008.10.004.DDT
Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Tamura, K., Nei, M. & Kumar, S. (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101 (30), 11030–11035. https://doi.org/10.1073/pnas.0404206101
Tan, H.H., Lim, K.K.P., Liew, J.H., Low, B.W., Lim, R.B.H., Kwik, J.T.B. & Yeo, D.C.J. (2020) The non-native freshwater fishes of Singapore: an annotated compilation. The Raffles Bulletin of Zoology, 68, 150–195.
Tan, M.P., Jamsari, A.F.J. & Siti Azizah, M.N. (2012) Phylogeographic pattern of the striped snakehead, Channa striata in Sundaland: Ancient river connectivity, geographical and anthropogenic singnatures. PLoS ONE, 7 (12), e52089. https://doi.org/10.1371/journal.pone.0052089
Tošić, K. & Taflan, E. (2019) Observations on morphological color changes in Pontic Shad (Alosa Immaculata, Bennet 1835) during spawning migration in the Danube. Scientific Annals of the Danube Delta Institute, 24, 109–116. https://doi.org/10.7427/DDI.24.12
Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D.N. (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1462), 1847–1857. https://doi.org/10.1098/rstb.2005.1716
Ward, R.D., Hanner, R. & Hebert, P.D. (2009) The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology, 74, 329–356.
Webster, M.M., Atton, N., Hart, P.J.B. & Ward, A.J.W. (2011) Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus) within a drainage basin. PLoS ONE, 6 (6), e21060. https://doi.org/10.1371/journal.pone.0021060
Xue, B.K. & Leibler, S. (2018) Benefits of phenotypic plasticity for population growth in varying environments. Proceedings of the National Academy of Sciences of the United States of America, 115 (50), 12745–12750. https://doi.org/10.1073/pnas.1813447115

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3