Application of DNA Barcoding in the Classification of Grasshoppers (Orthoptera: Acridoidea)—A Case Study of grasshoppers from Hebei Province, China

Author:

CHEN LI-PING,CHANG YA-GE,LI JIAN,WANG JIAN-MEI,LIU JIN-LIN,ZHI YONG-CHAO,LI XIN-JIANG

Abstract

Grasshoppers (Orthoptera: Acridoidea) are the main pests in agriculture, animal husbandry and forestry, and some species of grasshoppers can cause serious disaster. Taxonomy is the basis of pest control. Traditional morphological identification is time-consuming and laborious. It may be due to the existence of cryptic species or the limited number of morphologists, making the identification extremely unstable. In recent years, with the development of molecular systematics, DNA barcoding technology has been applied to environment, ecology, quarantine and so on. This study focuses on testing the feasibility of DNA barcoding in the species identification for superfamily Acridoidea. Sequences of the cox1 gene were obtained from 245 individuals of 43 species of Acridoidea and one species of Tetrigoidea as outgroup from Hebei Province. Phylogenetic, genetic distance and sequence difference threshold analyses using the Maximum Likelihood (ML), Automatic Barcode Gap Discovery (ABGD) and Molecular Defined Operational Taxonomic Units (MOTU) methods, respectively, were performed for obtained sequences and the 139 additional sequences of 21 species downloaded from GenBank. The results have shown that 40, 33, and 35 species among the 48 species are consistent with the traditional morphological classification based on the phylogenetic tree, ABGD and MOTU results, respectively and the DNA barcoding technology is very efficient and helpful for identifying the species of the superfamily Acridoidea; however, the morphological approach is still playing a key role in the species identifications. It also indicates that the cox1 gene is suitable for the phylogeny of genera and species level, but it is not suitable for the phylogenetic relationship of the advanced taxa such as families. 

Publisher

Magnolia Press

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3