Ponticola hircaniaensis sp. nov., a new and critically endangered gobiid species (Teleostei: Gobiidae) from the southern Caspian Sea basin

Author:

ZAREI FATAHORCID,ESMAEILI HAMID REZAORCID,KOVAČIĆ MARCELOORCID,SCHLIEWEN ULRICH K.ORCID,ABBASI KEYVANORCID

Abstract

Ponticola hircaniaensis sp. nov. is described as a new gobiid species from the Kaboudval Stream, southern Caspian Sea basin. The new species is diagnosed among Caspian Sea basin Ponticola species by the following combination of characters: second dorsal-fin branched rays 14–16, anal-fin branched rays 10–12, scales in lateral series 52–59; lower jaw slightly, if at all, prognathous; head and body yellowish brown showing a reticulate brown pattern on a yellow background, first dorsal fin with a marginal bright orangish-yellow band and a dark anterior spot, upper part of pectoral-fin base with a distinct dark brown stripe; length of third spine in first dorsal fin 13.4–18.3 % of standard length (SL), second dorsal-fin spine length 11.1–13.8 % SL, caudal peduncle length and depth 16.4–20.1 % and 11.1–12.8 % SL, respectively, head depth at nape 70.9–81.0 % of head length (HL), and at eye 52.5–66.0 % HL; sagittal otolith dorsal rim with a broad concavity in the middle, dorsal depression absent or indistinct, sulcus length/sulcus height and sulcus height/otolith height ratios 1.47–1.82 and 0.34–0.40, respectively. It is also characterised by a K2P nearest neighbour distance of 5% to P. kessleri in the mtDNA COI barcode region. Mitochondrial and nuclear DNA analyses suggested extensive hybridization between P. hircaniaensis sp. nov. and P. gorlap at Kaboudval, providing evidence for the first record of hybridization in the Ponto-Caspian gobiids. Based on narrow geographic range isolated above the Zarrin Gol Dam (< 2 km2), extensive hybridization with P. gorlap, and other threats, the new species should be considered Critically Endangered.  

Publisher

Magnolia Press

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference2 articles.

1.

Andreou, D., Arkush, K.D., Guégan, J.F. & Gozlan, R.E. (2012) Introduced pathogens and native freshwater biodiversity: a case study of Sphaerothecum destruens. PLoS One, 7, e36998. https://doi.org/10.1371/journal.pone.0036998
Baldwin, C.C., Mounts, J.H., Smith, D.G. & Weigt, L.A. (2009) Genetic identification and color descriptions of early life-history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa, 26, 1–22. https://doi.org/10.5281/zenodo.185742
Bartley, D.M., Rana, K. & Immink, A.J. (2000) The use of inter-specific hybrids in aquaculture and fisheries. Reviews in Fish Biology and Fisheries, 10, 325–337. https://doi.org/10.1023/A:1016691725361
Bogutskaya, N.G., Kijashko, P.V., Naseka, A.M. & Orlova, M.I. (2013) Identification keys for fish and invertebrates of the Caspian Sea. Vol. 1. Fish and Molluscs. КМК Scientific Press Ltd., St. Petersburg and Moscow, 244 pp. [in Russian]
Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T.A. (1992) Single-locus and multilocus DNA fingerprinting. In: Hoezel, C. (Ed.), Molecular genetics analysis of populations: a practical approach. Oxford University Press, New York, New York, pp. 225–269.
Chow, S. & Hazama, K. (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Molecular Ecology, 7, 1255–1256.
Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
Eagderi, S., Nikmehr, N. & Poorbagher, H. (2020) Ponticola patimari sp. nov. (Gobiiformes: Gobiidae) from the southern Caspian Sea basin, Iran. FishTaxa, 17 (2020), 22–31.
Fricke, R., Eschmeyer, W.N. & Van der Laan, R. (2022) Eschmeyer’s catalog of fishes: genera, species, references. Available from; http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 16 February 2022)
Gierl, C., Liebl, D., Šanda, R., Vukić, J., Esmaeili, H.R. & Reichenbacher, B. (2018) What can goby otolith morphology tell us?. Cybium, 4, 349–363. https://doi.org/10.26028/cybium/2018-424-006
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
ahttps://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29
Hashemzadeh Segherloo, I., Normandeau, E., Benestan, L., Rougeux, C., Coté, G., Moore, J.S., Ghaedrahmati, N., Abdoli, A. & Bernatchez, L. (2018) Genetic and morphological support for possible sympatric origin of fish from subterranean habitats. Scientific Reports, 8, 2909. https://doi.org/10.1038/s41598-018-20666-w
Hubbs, C.L. (1955) Hybridization between fish species in nature. Systematic Zoology, 4, 1–20. https://doi.org/10.2307/2411933
IUCN (2012) IUCN red list categories and criteria. Version 3.1. 2nd Edition. IUCN, Gland and Cambridge. Available from; https://www.iucn.org/content/iucn-red-list-categories-and-criteria-version-31-second-edition (accessed 4 May 2022)
Jacobs, P. & Hoedemakers, K. (2013) The round goby Neogobius melanostomus (Pallas, 1814) (Perciformes: Gobiidae), an invasive species in the Albert Canal (Belgium). Belgian Journal of Zoology, 143, 148–153.
Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov Chain Monte Carlo. Bioinformatics, 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
Keskin, E. & Atar, H.H. (2013) DNA barcoding commercially important fish species of Turkey. Molecular Ecology Resources, 13, 788–797. https://doi.org/10.1111/1755-0998.12120
Kovačić, M. & Engin, S. (2008) Two new species of Neogobius (Gobiidae) from northeastern Turkey. Cybium, 32, 73–80. https://doi.org/10.26028/cybium/2008-321-007
Krijgsman, W., Tesakov, A., Yanina, T., Lazarev, S., Danukalova, G., Van Baak, C.G., Agustí, J., Alçiçek, M.C., Aliyeva, E., Bista, D. & Bruch, A. (2019) Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth-Science Reviews, 188, 1–40. https://doi.org/10.1016/j.earscirev.2018.10.013
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
Leigh, J.W. & Bryant, D. (2015) Popart: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410
Miller, P.J. (1986) Gobiidae. In: Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J. & Tortonese, E. (Eds.), Fishes of the North-eastern Atlantic and the Mediterranean. Vol. 3. UNESCO, Paris, pp. 1019–1085.
Miller, P.J. (2003) The Freshwater fishes of Europe. Vol. 8/I Mugilidae, Atherinidae, Atherinopsidae, Blenniidae, Odontobutidae, Gobiidae 1. AULA-Verlag GmbH, Wiebelsheim and Verlag fur Wissenschaft und Forschung, Berlin, XII + 404 pp.
Miller, P.J. & Vasil’eva, E.D. (2003) Neogobius Iljin, 1927. In: Miller, P.J. (Ed.). The freshwater fishes of Europe, Vol. 8/I Mugilidae, Atherinidae, Atherinopsidae, Blenniidae, Odontobutidae, Gobiidae 1. AULA-Verlag GmbH, Wiebelsheim and Verlag fur Wissenschaft und Forschung, Berlin, pp. 163–171.
Neilson, M.E. & Stepien, C.A. (2009). Escape from the Ponto-Caspian: evolution and biogeography of an endemic goby species flock (Benthophilinae: Gobiidae: Teleostei). Molecular Phylogenetics and Evolution, 52, 84–102. https://doi.org/10.1016/j.ympev.2008.12.023
Peres, W.A.M., Bertollo, L.A.C., Buckup, P.A., Blanco, D.R., Kantek, D.L.Z. & Moreira-Filho, O. (2012) Invasion, dispersion and hybridization of fish associated to river transposition: karyotypic evidence in Astyanax “bimaculatus group”(Characiformes: Characidae). Reviews in Fish Biology and Fisheries, 22, 519–526. https://doi.org/10.1007/s11160-011-9246-2
Pinchuk, V.I., Vasil’eva, E.D. & Miller, P.J. (2003) Neogobius ratan (Nordmann, 1840). In: Miller, P.J. (Ed.), The freshwater fishes of Europe, Vol. 8/I Mugilidae, Atherinidae, Atherinopsidae, Blenniidae, Odontobutidae, Gobiidae 1. AULA-Verlag GmbH, Wiebelsheim and Verlag fur Wissenschaft und Forschung, Berlin, pp. 357–369.
Pinheiro, A.P.B., Melo, R.M.C., Teixeira, D.F., Birindelli, J.L.O., Carvalho, D.C. & Rizzo, E. (2019) Integrative approach detects natural hybridization of sympatric lambaris species and emergence of infertile hybrids. Scientific Reports, 9, 1–12. https://doi.org/10.1038/s41598-019-40856-4
Ponton, D. (2006) Is geometric morphometrics efficient for comparing otolith shape of different fish species? Journal of Morphology, 267, 750–757. https://doi.org/10.1002/jmor.10439
Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
Sands, A.F., Neubauer, T.A., Nasibi, S., Harandi, M.F., Anistratenko, V.V., Wilke, T. & Albrecht, C. (2019) Old lake versus young taxa: a comparative phylogeographic perspective on the evolution of Caspian Sea gastropods (Neritidae: Theodoxus). Royal Society Open Science, 6, 190965. https://doi.org/10.1098/rsos.190965
Schliewen, U.K. & Kovačić, M. (2008) Didogobius amicuscaridis spec. nov. and D. wirtzi spec. nov., two new species of symbiotic gobiid fish from São Tomé and Cape Verde islands. Spixiana, 31, 247–261.
Schwarzhans, W., Agiadi, K. & Carnevale, G. (2020) Late Miocene–Early Pliocene evolution of Mediterranean gobies and their environmental and biogeographic significance. Rivista Italiana di Paleontologia e Stratigrafia, 126, 657–72. https://doi.org/10.13130/2039-4942/14185
Scribner, K.T., Page, K.S. & Bartron, M.L. (2000) Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Reviews in Fish Biology and Fisheries, 10, 293–323. https://doi.org/10.1023/A:1016642723238
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
Tajbakhsh, F., Rajabi-Maham, H., Abdoli, A., Stepien, C.A. & Kiabi, B.H. (2022) DNA sequence support for reclassification of the endemic southern Caspian Sea deepwater goby as Neogobius bathybius (formerly Ponticola; Perciformes: Gobiidae) and recent population expansion of a continuous population. Ichthyology & Herpetology, 110, 13–21. https://doi.org/10.1643/i2020015
Vasil’eva, E.D., Mousavi-Sabet, H. & Vasil’ev, V.P. (2015) Ponticola iranicus sp. nov. (Actinopterygii: Perciformes: Gobiidae) from the Caspian Sea basin. Acta Ichthyologica et Piscatoria, 45, 189–197.
Vasil’eva, E.D., Schwarzhans, W.W., Medvedev, D.A. & Vasil’ev, V.P. (2016) Cryptic species of Ponto-Caspian bighead goby of the genus Ponticola (Gobiidae). Journal of Ichthyology, 56, 1–18. https://doi.org/10.1134/S003294521601015X
Xia, X. (2018) DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 35, 1550–1552. https://doi.org/10.1093/molbev/msy073
Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3
Zarei, F., Esmaeili, H.R., Schliewen, U.K. & Abbasi, K. (2022) Taxonomic diversity and distribution of the genus Proterorhinus (Teleostei: Gobiidae) in the Caucasus biodiversity hotspot with conservation implications. Aquatic Conservation: Marine and Freshwater Ecosystems, 32, 129–138. https://doi.org/10.1002/aqc.3728
Zarei, F., Esmaeili, H.R., Schliewen, U.K., Abbasi, K. & Sayyadzadeh, G. (2021) Mitochondrial phylogeny, diversity, and ichthyogeography of gobies (Teleostei: Gobiidae) from the oldest and deepest Caspian sub-basin and tracing source and spread pattern of an introduced Rhinogobius species at the tricontinental crossroad. Hydrobiologia, 848, 1267–1293. https://doi.org/10.1007/s10750-021-04521-0
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499

2.

 

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3