A new species of Fusigobius (Teleostei: Gobiidae) from the Red Sea and Gulf of Aden

Author:

BOGORODSKY SERGEY V.ORCID,KOVAČIĆ MARCELOORCID,MAL AHMAD O.ORCID,ALPERMANN TILMAN J.ORCID

Abstract

The gobiid species, Fusigobius humerosus sp. nov., is described based on 12 type and 18 non-type specimens collected from the Red Sea and Gulf of Aden. The new species can be distinguished from congeners by a combination of meristic and morphometric characters. The new species was formerly misidentified with F. humeralis: both are characterised by a semitranslucent body; head and body with numerous small dusky orange-yellow spots; a round black spot in humeral region just above base of pectoral fin; and a black spot subequal to pupil diameter at midbase of the caudal fin. However, Fusigobius humerosus sp. nov. differs from F. humeralis by scales on side of nape not extending forward to above posterior margin of preopercle (vs. scales variably extending forward to between above posterior preopercular margin and orbit); first dorsal-fin spine longest (vs. second and third dorsal-fin spines longest); shorter upper jaw; shorter anal-fin spine; and posterior nostril about halfway between orbit and anterior nostril (vs. posterior nostril closer to orbit). The most complete description of the genus Fusigobius is provided. In phylogenetic analyses of publicly available sequences of the barcoding portion of the mitochondrial cytochrome oxidase subunit I (COI) gene, sequences derived from the new species form a separate and well-divergent monophyletic lineage. The resulting COI gene tree further suggests that the new Fusigobius species is phylogenetically most closely related to F. humeralis which forms its sister species in the maximum likelihood tree. Molecular species delimitation of available Fusigobius COI barcodes shows that 19 or 20 hypothetical divergent evolutionary lineages can be deduced depending on the analytical approach (ABGD = 19 and bPTP = 20), indicating a potentially higher taxonomic richness than the presently acknowledged 11 valid species. However, the assignment of available species names for some lineages remains uncertain, highlighting the need for an additional integrative taxonomic research on this genus.  

Publisher

Magnolia Press

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference1 articles.

1.

Al-Rshaidat, M.M., Snider, A., Rosebraugh, S., Devine, A.M., Devine, T.D., Plaisance, L., Knowlton, N. & Leray, M. (2016) Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea. Genome, 59 (9), 724–737. https://doi.org/10.1139/gen-2015-0208
Agorreta, A., San Mauro, D., Schliewen, U., Van Tassell, J.L., Kovačić, M., Zardoya, R. & Ruber, L. (2013) Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Molecular Phylogenetics and Evolution, 69, 619–633. https://doi.org/10.1016/j.ympev.2013.07.017
Akihito, Hayashi, M. & Yoshino, T. (1984) Suborder Gobioidei. In: Masuda, H., Amaoka, K., Araga, C. & Uyeno, T. (Eds.), The Fishes of the Japanese Archipelago. Tokai University Press, Tokyo, pp. 236–289.
Allen, G.R. & Erdmann, M.V. (2012) Reef Fishes of the East Indies, Volume 3. Tropical Reef Research, Perth, pp. 857–1260.
Atta, C.J., Coker, D.J., Sinclair-Taylor, T.H., DiBattista, J.D., Kattan, A., Monroe, A.A. & Berumen, M.L. (2019) Conspicuous and cryptic reef fishes from a unique and economically important region in the northern Red Sea. PLoS One, 14 (10), e0223365. https://doi.org/10.1371/journal.pone.0223365
Baldwin, C.C., Weigt, L.A., Smith, D.G. & Mounts, J.H. (2009) Reconciling Genetic Lineages with Species in Western Atlantic Coryphopterus (Teleostei: Gobiidae). Smithsonian Contributions to the Marine Sciences, 38, 111–138.
Baldwin, C.C. & Robertson, D.R. (2015) A new, mesophotic Coryphopterus goby (Teleostei, Gobiidae) from the southern Caribbean, with comments on relationships and depth distributions within the genus. ZooKeys, 513, 123–142.
https://doi.org/10.3897/zookeys.513.9998
Boc, A., Diallo, A.B. & Makarenkov, V. (2012) T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Research, 40 (W1), W573–W579. https://doi.org/10.1093/nar/gks485
Böhlke, J.E. & Robins, C.R. (1960) A revision of the gobioid fish genus Coryphopterus. Proceedings of the Academy of Natural Sciences of Philadelphia, 112, 103–128.
Chen, I.-S. & Shao, K.-T. (1997) Fusigobius aureus, a new species of gobiid fish (Perciformes, Gobiidae) from Flores Island, Indonesia. Acta Zoologica Taiwanica, 8 (2), 87–92.
Delrieu-Trottin, E., Williams, J.T., Pitassy, D., Driskell, A., Hubert, N., Viviani, J., Cribb, T.H., Espiau, B., Galzin, R., Kulbicki, M., de Loma, T.L., Meyer, C., Mourier, J., Mou-Tham, G., Parravicini, V., Plantard, P., Sasal, P., Siu, G., Tolou, N., Veuille, M., Weigt, L. & Planes, S. (2019) A DNA barcode reference library of French Polynesian shore fishes. Scientific Data, 6 (1), 114. https://doi.org/10.1038/s41597-019-0123-5
Frandsen, P.B., Calcott, B., Mayer, C. & Lanfear, R. (2015) Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evolutionary Biology, 15 (1), 13. https://doi.org/10.1186/s12862-015-0283-7
Fricke, R., Eschmeyer, W.N. & Van der Laan, R. (2022) Eschmeyer’s catalog of fishes: genera, species, references. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 6 June 2022)
Fujita, M.K., Leaché, A.D., Burbrink, F.T., McGuire, J.A. & Moritz, C. (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology and Evolution, 27 (9), 480–488. https://doi.org/10.1016/j.tree.2012.04.012
Geiger, M.F., Herder, F., Monaghan, M.T., Almada, V., Barbieri, R. & Bariche, M. (2014) Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Molecular Ecology Resources, 14 (6), 1210–1221. https://doi.org/10.1111/1755-0998.12257
Goren, M. (1978) A new gobiid genus and seven new species from Sinai coasts (Pisces: Gobiidae). Senckenbergiana Biologica, 59, 191–203.
Günther, A. (1877) Andrew Garrett’s Fische der Südsee. Band II, Heft. VI. Journal des Museum Godeffroy, 4 (13), 169–216.
Hoese, D.H. (1986) Family No. 240: Gobiidae. In: Smith, M.M. & Heemstra, P.C., Smiths’ Sea Fishes. Macmillan South Africa, Johannesburg, pp. 774–807.
Hoese, D.H. & Obika, Y. (1988) A new gobiid fish, Fusigobius signipinnis, from the western tropical Pacific. Japanese Journal of Ichthyology, 35, 282–288. https://doi.org/10.1007/BF02938428
Hoese, D.H. & Reader, S. (1985) A new gobiid fish, Fusigobius duospilus, from the tropical Indo-pacific. Special Publication, J.L.B. Smith Institute of Ichthyology, 36, 1–9.
Hubert, N., Meyer, C.P., Bruggemann, H.J., Guerin, F., Komeno, R.J.L., Espiau, B., Causse, R., Williams, J.T. & Planes, S. (2012) Diversity in Indo-Pacific coral-reef fishes revealed by DNA- barcoding provides new support to the centre-of-overlap hypothesis. PloS One, 7 (3), e28987. https://doi.org/10.1371/journal.pone.0028987
Hubert, N., Dettai, A., Pruvost, P., Cruaud, C., Kulbicki, M., Myers, R.F. & Borsa, P. (2017) Geography and life history traits account for the accumulation of cryptic diversity among Indo-West Pacific coral reef fishes. Marine Ecology Progress Series, 583, 179–193. https://doi.org/10.3354/meps12316
Ivanova, N.V., de Waard, J. & Hebert, P.D.N. (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6, 998–1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x
Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7 (4), 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
Kimmerling, N., Zuqert, O., Amitai, G., Gurevich, T., Armoza-Zvuloni, R., Kolesnikov, I., Berenshtein, I., Melamed, S., Gilad, S., Benjamin, S., Rivlin, A., Ohavia, M., Paris, C.B., Holzman, R., Kiflawi, M. & Sorek, R. (2018) Quantitative species-level ecology of reef fish larvae via metabarcoding. Nature Ecology & Evolution, 2, 306–316. https://doi.org/10.1038/s41559-017-0413-2
Kovačić, M. (2020) Checklist of gobies (Teleostei: Gobiidae) of the Mediterranean Sea and a key for species identification. Zootaxa, 4877 (1), 75–101. https://doi.org/10.11646/zootaxa.4877.1.3
Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. (2014). Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology, 14 (1), 82. https://doi.org/10.1186/1471-2148-14-82
Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) Partition Finder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34 (3), 772–773. https://doi.org/10.1093/molbev/msw260
Larson, H.K. (2022) Suborder Gobioidei. In: Heemstra, P.C., Heemstra, E., Ebert, D.A., Holleman, W. & Randall, J.E. (Eds.), Coastal fishes of the Western Indian Ocean, volume 5. South African Institute for Aquatic Biodiversity, Makhanda, pp. 18–202.
Lips, J., Lips, B. & Roux, J.-M. (2016) Poissons de Djibouti. Université de Djibouti, 248 pp.
McCulloch, A.R. & Ogilby, J.D. (1919) Some Australian fishes of the family Gobiidae. Records of the Australian Museum, 12 (10), 193–291., pls. 31–37. https://doi.org/10.5962/bhl.title.13606
Messing, J. (1983) New M13 vectors for cloning. Methods in Enzymology, 101, 20–78. https://doi.org/10.1016/0076-6879(83)01005-8
Miller, P.J. (1986) Gobiidae. In: Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J. & Tortonese, E. (Eds.), Fishes of the North-eastern Atlantic and the Mediterranean 3. UNESCO, Paris, pp. 1019–1085. https://doi.org/10.2307/1444931
Nelson, J.S. (2006) Fishes of the World. 4th Edition. John Wiley & Sons, Hoboken, 601 pp.
Pentinsaari, M, Vos, R. & Mutanen, M. (2017) Algorithmic single-locus species delimitation: effects of sampling effort, variation and nonmonophyly in four methods and 1870 species of beetles. Molecular Ecology Resources, 17 (3), 393–404. https://doi.org/10.1111/1755-0998.12557
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
Randall, J.E. (1994) A new genus and six new gobiid fishes (Perciformes: Gobiidae) from Arabian waters. Fauna of Saudi Arabia, 14, 317–340.
Randall, J.E. (1995) Fusigobius Whitley, a junior synonym of the gobiid fish genus Coryphopterus Gill. Bulletin of Marine Science, 56 (3), 795–798.
Randall, J.E. (2001) Five new Indo-Pacific gobiid fishes of the genus Coryphopterus. Zoological Studies, 40 (3), 206–225. https://doi.org/10.1007/s10228-001-8111-z
Randall, J.E. (2005) Reef and shore fishes of the South Pacific: New Caledonia to Tahiti and the Pitcairn Islands. University of Hawai’i, Hawaii, 707 pp.
Ryanskiy, A. (2022) Red Sea marine life. Andrey Ryanskiy publisher, 200 pp.
Saruwatari, T., Andres Lopez, J. & Pietsch, T.W. (1997) Cyanine blue: a versatile and harmless stain for specimen observation. Copeia, 1997 (4), 840–841. https://doi.org/10.2307/1447302
Smith, J.L.B. (1959) Gobioid fishes of the families Gobiidae, Periophthalmidae, Trypauchenidae, Taenioididae and Kraemeriidae of the western Indian Ocean. Ichthyological Bulletin, Department of Ichthyology, Rhodes University, 13, 185–225.
Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models”. Bioinformatics, 22 (21), 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
Stamatakis, A. (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post Analysis of Large Phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Steinke, D., Zemlak, S.Z. & Hebert, P.D.N. (2009) Barcoding Nemo: DNA-Based Identifications for the Ornamental Fish Trade. PloS One, 4 (7), e6300. https://doi.org/10.1371/journal.pone.0006300
Steinke, D., Connell, A.D. & Hebert, P.D.N. (2016) Linking adults and immatures of South African marine fishes. Genome, 59 (11), 959–967. https://doi.org/10.1139/gen-2015-0212
Steinke, D., de Waard, J.D., Gomon, M.F., Johnson, J.W., Larson, H.K., Lucanus, O., Moore, G.I., Reader, S. & Ward, R.D. (2017) DNA barcoding the fishes of Lizard Island (Great Barrier Reef). Biodiversity Data Journal, 5, e12409. https://doi.org/10.3897/BDJ.5.e12409
Thacker, C.E. & Cole, K.S. (2002) Phylogeny and evolution of the gobiid genus Coryphopterus. Bulletin of Marine Science, 70 (3), 837–850.
Thacker, C.E. & Roje, D.M. (2011) Phylogeny of Gobiidae and identification of gobiid lineages. Systematics and Biodiversity, 9 (4), 329–347.
https://doi.org/10.1080/14772000.2011.629011
Thacker, C.E., Thompson, A.R. & Roje, D.M. (2011) Phylogeny and evolution of Indo-Pacific shrimp-associated gobies (Gobiiformes: Gobiidae). Molecular Phylogenetics and Evolution, 59 (1), 168–176.
https://doi.org/10.1016/j.ympev.2011.02.007
Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D.N. (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1462), 1847–1857. https://doi.org/10.1098/rstb.2005.1716
Whitley, G.P. (1930) Additions to the check-list of the fishes of New South Wales. (No. 3). Australian Zoologist, 6 (2), 117–123.
Winterbottom, R. & Emery, A.R. (1986) Review of the Gobioid fishes of the Chagos Archipelago, central Indian Ocean. Royal Ontario Museum Life Science Contributions, 142, 1–82. https://doi.org/10.5962/bhl.title.52226

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3