Baja California Sur mangrove deep peat microbial communities cycle nitrogen but do not affect old carbon pool

Author:

Costa MT1,Ezcurra E2,Aburto-Oropeza O1,Maltz M3,Arogyaswamy K3,Botthoff J3,Aronson E3

Affiliation:

1. Aburto Lab, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0206, USA

2. Department of Botany and Plant Sciences, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA

3. Department of Microbiology and Plant Pathology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA

Abstract

Mangroves provide important ecosystem services, including storing carbon belowground for millennia. Mangrove carbon storage relies in part on high primary productivity, but essential to the long-lived nature of this storage is the slow rate of microbial decomposition of peat. In this study, we (1) examined how carbon and nitrogen densities and microbial community composition vary with peat age and (2) describe the formation of peat deposits over time. At 4 mangrove sites near La Paz, Baja California Sur, Mexico, we cored the sediments until rejection and obtained 5 cm samples at 20 cm intervals. In these samples, we measured organic carbon (Corg), total nitrogen, δ13C, δ15N, and radiocarbon (14C) age. We observed peat carbon densities of 3.4 × 10-2± 0.2 × 10-2 g cm-3, Corg:N ratios of 42 ± 3, and inter-site variation in Corg:N that reflects differing preservation conditions. Recalcitrant organic matter sources and anaerobic conditions leave a strong imprint on peat microbial communities. Microbial community composition and diversity were driven by depth and sediment characteristics, including Corg:N ratio and 14C age. Carbon dating allowed us to reconstruct the accumulation of organic matter over the last 5029 ± 85 yr. Even over this long time scale, though microbes have evidently continuously cycled the peat nitrogen pool, peat carbon density remains effectively unchanged.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3