Effects of temperature on a mixotrophic dinoflagellate (Lepidodinium sp.) under different nutritional strategies

Author:

Liu K1,Ng HY1,Zhang S2,Liu H134

Affiliation:

1. Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China

2. Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, PR China

3. Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China

4. State Key Laboratory of Marine Pollution, Hong Kong SAR, PR China

Abstract

Mixotrophs are widely distributed in aquatic ecosystems and play critical roles in the planktonic food web. However, how mixotrophs respond to projected ocean warming remains a debatable topic. To close the knowledge gap, we investigated the thermal responses of growth rate and functional traits of a mixotrophic dinoflagellate (Lepidodinium sp.) isolated from subtropical coastal waters. We found that Lepidodinium sp. is a facultative mixotroph with an obligate phototrophic lifestyle that adjusts its phagocytotic feeding according to inorganic nutrient concentrations. The thermal sensitivity in terms of activation energy (Ea, eV) of Lepidodinium sp. grown in mixotrophic mode (with sufficient prey, 0.69-0.89 eV) was significantly higher than in autotrophic mode (without prey, 0.30-0.37 eV). This finding is consistent with the results of predominantly heterotrophic mixotrophs, providing experimental evidence for the hypothesis that mixotrophs shift towards more heterotrophy with rising temperatures. Warming stimulated a higher growth rate of Lepidodinium sp. grown in mixotrophic conditions than in autotrophic conditions, indicating that mixotrophic dinoflagellates may benefit substantially from mixotrophy when temperature increases and prey is sufficient. Moreover, the cell size of both autotrophic and mixotrophic Lepidodinium sp. decreased with increasing temperature. The N:P and C:P ratios of Lepidodinium sp. did not vary with temperature, while the C:N ratio slightly increased. Our results suggest that mixotrophs like Lepidodinium sp. would become more heterotrophic with higher growth rates in warming oceans. The subsequent changes in their functional role from primary producers to consumers may affect food web dynamics and carbon and nutrient cycling.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3