Microbial-driven impact on aquatic phosphate fluxes in a coastal peatland

Author:

Choo S12,Dellwig O3,Wäge-Recchioni J1,Schulz-Vogt HN12

Affiliation:

1. Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany

2. Faculty of Mathematics and Natural Sciences, University of Rostock, 18059 Rostock, Germany

3. Department of Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany

Abstract

Polyphosphate-accumulating microbial mats can influence PO43- concentration in the benthic zone. To investigate the role of microbial mats in benthic P cycling, short peat cores including supernatant water from a coastal fen in NE Germany (southern Baltic Sea) were incubated in winter, summer and fall under 3 conditions: in situ, elevated temperature and oxygen-depletion. Bottom water PO43- concentrations decreased in treatments where a microbial mat had formed (summer and winter) but not in the mat-deficient fall treatment. The mats were densely populated with polyphosphate-rich Lyngbya sp. filaments. On the last day of incubation, PO43- concentrations in the oxygen-depleted bottom water were lower in the winter (70×) and summer (44×) than in the fall treatment, demonstrating the significant effect of microbial mats on PO43- fluxes, even under oxygen-depleted conditions. Mean polyphosphate-P content in the upper 1 cm peat layer of 8 freshly collected winter cores was 2.23 µmol g-1 (5% of total P), comprising a noticeable percentage of the P reservoir. Low sediment Fe:P molar ratios among the cores (5.9-6.3) indicated that P-adsorption sites in Fe-P compounds were fairly saturated and had limited efficiency in precipitating additional bottom water PO43-. Using known temperature-dependent coefficients for biological systems, we estimate that bottom water PO43- concentrations in temperature-elevated cores were reduced by 96% in the presence of a microbial mat. We propose that a microbial mat can take up a large amount of dissolved inorganic P, highlighting its regulatory role in coastal peatland P fluxes under varying environmental conditions.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3