Nutrient removal in a slow-flowing constructed wetland treating aquaculture effluent

Author:

Dalsgaard J1,von Ahnen M1,Pedersen PB1

Affiliation:

1. Section for Aquaculture, DTU Aqua, Technical University of Denmark, DK-9850 Hirtshals, Denmark

Abstract

Danish model trout farms (MTFs) use stream-like constructed wetlands for effluent polishing, and the industry is keen to improve wetland removal efficiency. To facilitate this, we examined longitudinal and seasonal nutrient removals in an MTF wetland with a hydraulic retention time (HRT) of 1.7 d, a free water surface (FWS) area of 7510 m2, and a volume of 6008 m3. Biweekly, 24-h composite water samples were obtained for 1 yr at 6 sampling stations along the wetland. Assuming plug flow conditions, reductions in particulate and dissolved nutrient concentrations were modelled as first-order removal processes, and removal rate constants (k1,A, m d-1) were plotted to reveal seasonal fluctuations. Particulate phosphorus and organic matter k1,A fluctuated more or less randomly through the year, reflecting that particulate nutrient removal predominantly takes place by sedimentation. In contrast, dissolved nitrogen, phosphorus, and organic matter k1,A fluctuated seasonally, demonstrating that dissolved nutrient removal relies on biologically mediated processes. Temperature oscillations probably governed the observed seasonal fluctuations in nitrate-N k1,A and could be approximated with an Arrhenius temperature coefficient of 1.07. Furthermore, denitrification appeared to be carbon-limited. Incoming dissolved phosphorous and ammonia became incorporated in the natural wetland growth cycle that included periods of net removal and release, resulting in minimal annual net removal. In summary, this study shows that improving nitrate removal in a slow-flowing MTF wetland would require some kind of carbon dosing, while further improving ammonia and phosphorus removal would require a reduction of the amounts of ammonia and dissolved phosphorus entering the wetland.

Publisher

Inter-Research Science Center

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3