Photosynthetic picoeukaryotes significantly affect global oceanic meta-metabolism: cellular and genome streamlining confer ecological success

Author:

Derilus D1,Burdyshaw CE2,Pinero F3,Massey SE4

Affiliation:

1. Environmental Sciences Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA

2. Joint Institute for Computational Science, University of Tennessee, Knoxville, TN 37996, USA

3. Mathematics Department, University of Puerto Rico-Ponce, Ponce, PR 00716, USA

4. Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA

Abstract

Photosynthetic picoeukaryotes (PPEs) are characterized by a reduction in cell and genome size but are free living, in contrast to many other organisms that have undergone such reductions. The relative abundance of PPEs in the oceans remains to be determined, as do the evolutionary imperatives behind their cell and genome reduction. Their enigmatic nature may be deciphered through metagenomics approaches; consequently, we utilized shotgun data from the Tara Oceans database to better understand both their ecological and genomic features. The clustering of meta-metabolomic networks constructed from shotgun data from 10 different sampling sites was influenced by the proportion of PPEs in the data sets. This, along with the relative abundance of RUBISCO sequences belonging to PPEs, indicates that they have a significant effect on oceanic meta-metabolism, emphasizing the evolutionary success of the streamlining strategy. Using rRNA sequences extracted from the shotgun data, a global oceanic distribution of PPEs showed little variation, including those lineages with reduced genome sizes. This indicates that genome and cellular streamlining is not an adaptation to environmental parameters but may rather be a community-driven effect. Lastly, and surprisingly given their role as primary producers, PPEs were found to comprise only 2 to 49% (17% on average) of all picoeukaryotes across 93 metagenomes. We show that contamination of the data set by eukaryotes with larger cell sizes is not responsible for the anomaly, and so the observation remains to be explained. The approaches described here allow us to draw a direct link between taxonomic composition and meta-metabolomic capacity, with implications for better understanding carbon fixation, biogeochemical cycling, and planetary self-regulation.

Publisher

Inter-Research Science Center

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3