Characterizing the habitat function of bivalve aquaculture using underwater video

Author:

Ferriss B12,Veggerby K3,Bogeberg M4,Conway-Cranos L5,Hoberecht L2,Kiffney P6,Litle K7,Toft J8,Sanderson B6

Affiliation:

1. National Research Council, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Seattle, WA 98112, USA

2. Alaska Fisheries Science Center, NMFS, NOAA, Seattle, WA 98115, USA

3. Ocean Associates, Inc., under contract to the Northwest Fisheries Science Center, NMFS, NOAA, Seattle, WA 98112, USA

4. The Nature Conservancy, Seattle, WA 98121, USA

5. Washington Department of Fish and Wildlife, Olympia, WA 98501, USA

6. Northwest Fisheries Science Center, NMFS, NOAA, Seattle, WA 98112, USA

7. Washington Sea Grant, Seattle, WA 98105, USA

8. Puget Sound Restoration Fund, Bainbridge Island, WA 98110, USA

Abstract

Bivalve aquaculture is an expanding coastal industry with the potential to modify the habitat of fish and crab species, affecting their refuge, movement, and feeding. The habitat function of shellfish aquaculture is not yet well understood, in part due to difficulties in data collection using traditional methods. Underwater video was used to observe fish and crab species’ affiliations with cultured Pacific oyster Crassostrea gigas and Manila clam Venerupis philippinarum aquaculture sites in comparison to uncultured reference sediment and eelgrass habitats. Sites were monitored in 9 locations across 3 regions of Puget Sound, Washington, USA, in the summers of 2017 and 2018. Of the 3038 fish and crabs observed, 98% were represented by Embiotocidae (surfperch), crabs, three-spined stickleback Gasterosteus aculeatus, Cottidae (sculpins), and Pleuronectiformes (flatfish). Overall, the affiliations of fish and crabs with bivalve aquaculture varied by species groups, culture type, and regional environmental and habitat conditions. These interactions varied on a scale of approximately 150 km, highlighting variation of aquaculture-ecological interactions at a scale not previously recorded in Puget Sound. Species composition varied between aquaculture and non-aquaculture habitats in 2 of the 3 regions studied. Species diversity and richness in aquaculture habitats varied regionally, relative to reference habitats. Pelagic species were more abundant in aquaculture and reference sites that had vertical structure, but abundances of demersal and benthic species on aquaculture habitat relative to reference sites varied regionally. The availability of habitats within intertidal regions, including varying types of aquaculture, could determine community structure for marine organisms such as fish and crab.

Publisher

Inter-Research Science Center

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3