Trends and possible causes of cloudiness variability in Montenegro in the period 1961-2017

Author:

Burić D1,Stanojević G2

Affiliation:

1. Faculty of Philosophy, University of Montenegro, 81400 Nikšić, Montenegro

2. Geographical Institute ‘Jovan Cvijić’ Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia

Abstract

Cloudiness is an important climate parameter, and it is closely related to insolation, temperature, and precipitation. Total cloud cover (TCC) data along with the number of cloudless (CL) and overcast (OC) days from 18 stations in Montenegro during the period 1961-2017 were used to determine the seasonal trends and possible causes of cloudiness variability. The Mann-Kendall test and Sen’s slope were used for trend detection. We found statistically significant (p < 0.05 and p < 0.10) decreasing (increasing) trends in TCC (the number of CL days) in winter, spring and summer. The exception was in autumn, when an increase (decrease) in the TCC (CL days) was shown, but in most cases, these changes were insignificant. The number of OC days declined in coastal and central regions, while a positive trend was found in the northern region for all seasons. The increase in the number of CL days during the summer and winter was more pronounced compared to the decreasing trend in the number of OC days. Pearson’s correlation (r) was used to access the relationship between cloudiness and principal modes of atmospheric variability such as North Atlantic Oscillation (NAO), Summer North Atlantic Oscillation (SNAO), Arctic Oscillation (AO), East Atlantic Oscillation (EA), East Atlantic-West Russian Oscillation (EAWR), Scandinavian Pattern (SCAND), Polar-Eurasian Oscillation (POLEUR), North Sea-Caspian Pattern (NCP), and South Oscillation (SOI) as well as regional patterns of climate variability—the Mediterranean Oscillation (MOI) and Western Mediterranean Oscillation (WeMO). A significant consistency (r > 0.60, p < 0.05) was found between time series of certain atmospheric circulation patterns and cloud parameters (NAO, AO, EAWR, SCAND, NCP, and MOI-1), especially in the colder half of the year.

Publisher

Inter-Research Science Center

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3