In silico evaluation of interactions between antibiotics in aquaculture and nuclear hormone receptors

Author:

Song C12,Wu Q3,Sun J45,Zhang R3,Chen J12,Wang X67,Fang L12,Liu Z8,Shan X12,Yin Y12

Affiliation:

1. Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China

2. Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agricultural and Rural Affairs, Beijing 100000, PR China

3. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China

4. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China

5. Suzhou Capital Greinworth Environmental Protection Technology Co., Ltd., Suzhou 215122, PR China

6. Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China

7. State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China

8. Department of Chemistry, Washington State University, Pullman, Washington 99164, USA

Abstract

Antibiotics have been commonly used as antimicrobial agents in the process of aquaculture worldwide. However, very few studies are available on the endocrine disruption-related health risks brought about by antibiotic residues from human consumption of aquatic products. Nuclear hormone receptors (NHRs) could mediate many endocrine-disrupting activities. Therefore, in the present study, a reverse docking method was used to predict the direct binding interactions between 16 NHR conformations and 15 common antibiotics in aquaculture, thereby determining their potential endocrine-disrupting risks. To reach a compromise between the extremely scarce experimental data and an urgent need for distinguishing antibiotics of high concern with potential food-borne endocrine-disrupting risks in aquaculture, a risk-ranking system was then developed based on a comprehensive risk score for each category of antibiotics, which was the sum of the products of endocrine-disrupting potential coefficients and annual usages of antibiotics in aquaculture. The results indicated that 15% of 224 docking simulations showed a relatively high probability of binding. Sulfonamides seemed to possess the greatest endocrine-disrupting potential. The antagonistic conformation of the androgen receptor was the most susceptible NHR conformation. The rank orders of the endocrine-disrupting risk of different categories of antibiotics varied greatly from country to country, which were significantly affected by the annual usage. These findings pose questions regarding public health and safety associated with human consumption of antibiotic-containing aquatic products. In addition, we provide an approach to rank antibiotics for a specific country or region, with respect to their potential endocrine-disrupting activity, that can be used to inform regulation and prioritize experimental verification.

Publisher

Inter-Research Science Center

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3