Diving plasticity in the ancestral range of the yellow-eyed penguin Megadyptes antipodes, an endangered marine predator

Author:

Muller CG12,Chilvers BL1,French RK2,Battley PF2

Affiliation:

1. Wildbase, School of Veterinary Sciences, Massey University, Palmerston North 4442, New Zealand

2. Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand

Abstract

In long-lived marine predators such as penguins, foraging behaviour is related to breeding success. Yellow-eyed penguins Megadyptes antipodes are thought to be predominantly benthic foragers around mainland New Zealand, with previous dive studies showing little variation in diving behaviour and minimal change by year or breeding status. This apparent absence of foraging flexibility may be linked to local prey availability and therefore also to foraging success, factors believed to contribute to the current population decline. Here, we undertook the first detailed study of yellow-eyed penguin diving and foraging behaviour in the subantarctic Auckland Islands, part of the original ancestral range of the species that colonised mainland New Zealand. We collected dive logs from 134 foraging trips made by 73 breeders from Enderby Island, Auckland Islands, in the New Zealand subantarctic. Pelagic dives and foraging trips were recorded in the subantarctic population—a foraging strategy not previously published in dive studies on this species. Changes between benthic and pelagic foraging were recorded for individuals within foraging trips, within a breeding season, and between years. Differences in diving behaviour between the subantarctic and that reported for mainland New Zealand are likely influenced by local bathymetry and environmental conditions, and prey availability. However, the subantarctic population shows a greater use of pelagic foraging not evident in the northern population, even in areas that have a similar depth to some mainland foraging areas. This observed foraging flexibility may have implications for breeding success and potentially the long-term population trends of these 2 genetically similar populations.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3