Intra- and inter-annual shifts in foraging tactics by parental northern gannets Morus bassanus indicate changing prey fields

Author:

d’Entremont KJN1,Davoren GK2,Walsh CJ1,Wilhelm SI3,Montevecchi WA1

Affiliation:

1. Cognitive and Behavioural Ecology Program, Psychology Department, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador A1C 5X7, Canada

2. Department of Biology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

3. Canadian Wildlife Service, Environment and Climate Change Canada, Mount Pearl, Newfoundland and Labrador A1N 4T3, Canada

Abstract

Seabirds are constrained by central-place foraging during breeding, when the energy obtained from prey must outweigh the costs of travel, search, capture and transport. The distribution and phenology of the cold-blooded marine fishes they exploit are heavily influenced by oceanic climate. Northern gannets, the largest breeding seabird in the North Atlantic, use a generalist foraging strategy, preying on a wide array of pelagic fishes. They employ different foraging tactics for different prey types, with rapid, shallow V-shaped dives used for large, powerful prey such as mackerel, and U-shaped dives for smaller forage fishes like capelin. Here we assess intra- and inter-annual differences in foraging effort and influences of prey availability at the southernmost colony of the species at Cape St. Mary’s, Newfoundland, Canada. We compared foraging trip characteristics (total and maximum distance, directness, duration and number of dives) of parental gannets during the breeding seasons of 2019 (n = 10) and 2020 (n = 7) using GPS/time-depth recorders. Individual gannets shifted away from using U-shaped dives in early chick-rearing to primarily V-shaped dives in late chick-rearing. Shifts were abrupt and occurred in mid-August in 2019 and 2020. Maximum and total foraging trip distance and duration were significantly greater during early chick-rearing in 2020 than in 2019. Kernel density 50% utilization distributions were larger and expanded further from the colony during early chick-rearing in 2020 (7297 ± 1419 km2; mean ± SE) than 2019 (2382 ±797 km2). Increased foraging effort during early chick-rearing in 2020 was likely due to decreased capelin availability, resulting from earlier spawning, and greater variation in the timing of spawning among sites, which may have been influenced by warmer waters.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3