Dynamics of carbonate sediment production by Halimeda: implications for reef carbonate budgets

Author:

Castro-Sanguino C1,Bozec YM1,Mumby PJ1

Affiliation:

1. Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, QLD 4072, Australia

Abstract

Reef carbonate production and sediment generation are key processes for coral reef development and shoreline protection. The calcified green alga Halimeda is a major contributor of calcareous sediments, but rates of production and herbivory upon Halimeda are driven by biotic and environmental factors. Consequently, estimating rates of calcium carbonate (CaCO3) production and transformation into sediment requires the integration of Halimeda gains and losses across habitats and seasons, which is rarely considered in carbonate budgets. Using seasonal rates of recruitment, growth, senescence and herbivory derived from observations and manipulative experiments, we developed an individual-based model to quantify the annual cycle of Halimeda carbonate and sediment production at Heron Island, Great Barrier Reef. Halimeda population dynamics were simulated both within and outside branching Acropora canopies, which provide refuge from herbivory. Shelter from herbivory allowed larger Halimeda thalli to grow, leading to higher rates of carbonate accumulation (3.9 and 0.9 kg CaCO3 m-2 yr-1 within and outside Acropora canopies, respectively) and sediment production (2.5 versus 1.0 kg CaCO3 m-2 yr-1, respectively). Overall, 37% of the annual carbonate production was transformed into sediments through senescence (84%) and fish herbivory (16%), with important variations among seasons and habitats. Our model underlines that algal rates of carbonate production are likely to be underestimated if herbivory is not integrated into the carbonate budget, and reveals an important indirect pathway by which structurally complex coral habitats contribute to reef carbonate budgets, suggesting that coral losses due to climate change may lead to further declines in reef sediment production.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3