Protist grazing contributes to microbial food web at the upper boundary of the twilight zone in the subarctic Pacific

Author:

McNair HM1,Menden-Deuer S1

Affiliation:

1. Graduate School of Oceanography, University of Rhode Island, Rhode Island 02882, USA

Abstract

Grazing by herbivorous protists (microzooplankton) is a major loss pathway of primary production in the surface ocean, yet its impact below the well-lit surface ocean is largely unknown. The upper boundary of the twilight zone is critically important to understanding carbon cycling and is often the depth of highest attenuation of particulate carbon flux. Available measurements of primary production and grazing below the well-lit surface ocean suggest that the upper boundary of the twilight zone may harbor active but poorly constrained food web processes. Previous grazing rates from the base of the euphotic zone were measured in subtropical and tropical environments. Thus, the impact of protist grazing on prey populations remains unknown in colder conditions at higher latitudes. To advance understanding and provide mechanistic insight into processes occurring at the base of the euphotic zone (0.4-0.7% PAR), we measured predation rates on both phytoplankton and heterotrophic prokaryotes in the North Pacific, using a novel method that amplified the grazing signal by concentrating the predator community, enabling detection of grazing rates far below previous limits. Protists consumed 0.6% of the phytoplankton population daily and 12% of daily heterotrophic prokaryote growth. These conservative rate measurements document marginal removal of phytoplankton even in these colder regimes, implying flows of energy from single-cell primary producers and prokaryotes to single-cell protists at rates far below previous detection limits in this twilight region of a low-productivity system.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3