Asynchronized spawning responses of small pelagic fishes to a short-term environmental change

Author:

Tiedemann M1,Ndour I2,Sow FN2,Bagøien E1,Krakstad JO1,Ostrowski M1,Stenevik EK1,Ensrud T1,Isari S1

Affiliation:

1. Institute of Marine Research, 5817 Bergen, Norway

2. Centre de Recherches Océanographiques de Dakar-Thiaroye, 11500 Dakar, Senegal

Abstract

We provide substantial evidence on how short-term changes in environmental conditions activate and deactivate spawning activities in small pelagic fishes. An ichthyoplankton survey was conducted along the southernmost part of the Canary Current upwelling ecosystem in May 2013, covering the area twice within 20 d. This period coincided with a strong environmental change from a cold productive upwelling regime to a warmer and less productive upwelling relaxation event. This change triggered a shift in spawning activity from European anchovy Engraulis encrasicolus to round/flat sardinella Sardinella spp. We used zero-altered negative binomial regression models with a generalized additive structure based on integrated nested Laplace approximations to link early larval distribution patterns to the 2 different regimes. The models confirmed 2 species-specific temperature spawning windows, suggesting a spawning pause of anchovy during upwelling relaxation while simultaneously activating spawning in sardinella. Observing immediate spawning responses to the 2 environmental regimes underlines the assumption that windows of spawning opportunity are the main drivers of small pelagic fish fluctuations in upwelling regions. The duration of a specific environmental condition can, therefore, increase or decrease the chances for reproductive success. The observations of this study may explain why certain small pelagic fish species can dominate over others during a particular period and might also apply to other upwelling regions of the world oceans where upwelling and relaxation events alternate.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference81 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3