Hawksbill and green turtle niche overlap in a marine protected area, US Virgin Islands

Author:

Moorehouse MA12,Baldwin JD2,Hart KM3

Affiliation:

1. Department of Geography and Environmental Engineering, United States Military Academy, West Point, NY 19960, USA

2. Department of Biology, Florida Atlantic University, 3200 College Avenue, Davie, FL 33468, USA

3. U.S. Geological Survey, Wetland and Aquatic Research Center, Davie, FL 33314, USA

Abstract

Studying how species interact with their environment and other co-occurring species are 2 main aspects of ecology. For marine turtles, ocean currents drive migratory routes and may determine the location of surrounding foraging grounds. As a result, circumglobal species like the hawksbill turtle Eretmochelys imbricata and green turtle Chelonia mydas adapt to diverse foraging habitats and employ varied feeding strategies. Dietary specializations may reduce competition for available food and space resources between co-occurring hawksbill and green turtles in US Virgin Island shallow reef habitats. This study analyzed isotopic data from immature hawksbill (n = 49; range: 18.7-49.8 cm straight carapace length [SCL]) and green turtles (n = 225; range: 24.1-69.4 cm SCL) to examine foraging niche. We used nitrogen stable isotope (δ15N) values as an indicator of trophic positioning and carbon stable isotope (δ13C) values as a habitat variable. Turtles were hand-captured across an 8 yr period (2012-2019), which facilitated the distinction of isotopic patterns in both the environment and among individual turtles. Understanding variations in habitat, community dynamics, and dietary consumption allowed us to utilize a 5 point framework to translate isotopic space to foraging niche. We found that the site’s relatively stable environmental conditions allow for isotopic overlap between hawksbill and green turtles despite the specialized feeding strategies each species employs. We also underscore the need to evaluate species-specific tissue turnover estimates as evidenced by the influence of tropical storms on recaptured turtle isotopic signatures. These findings inform our understanding of resource use for these imperiled species at our study site and are useful for future global isotopic comparisons.

Publisher

Inter-Research Science Center

Subject

Nature and Landscape Conservation,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3