Diatoms and fatty acid production in Arctic and estuarine ecosystems—a reassessment of marine food webs, with a focus on the timing of shorebird migration

Author:

Baird P1

Affiliation:

1. Centre for Wildlife Ecology, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Abstract

This review highlights diatoms and their production of fatty acids at Arctic ice edges and temperate estuaries as strategic in initiating high spring productivity. As important as their energy production is their synthesis de novo of omega-3 long-chain polyunsaturated fatty acids (LCPUFAs), which are bioactive molecules fundamental to maintaining ecosystem processes, and are necessary for reproduction and growth for the entire marine food web. Without these fatty acids, consumers can suffer poor reproduction and growth even with sufficient energy intake, and shorebirds may need LCPUFAs for nonstop long-hop migration. Timing of high energy fatty acid and LCPUFA production by diatoms coincides with growth and reproduction of consumer populations, with the arrival of seabirds in the Arctic and staging of shorebirds in estuaries. The switch from diatom production of carbohydrates to fatty acids is triggered by changes in chemical and physical environmental factors, which can be muted by factors such as climate change or habitat modification. Higher ocean temperatures and lower pH from climate change alters the ability of diatoms to make LCPUFAs, and habitat degradation reduces the numbers of diatoms in the area, subsequently reducing the amounts of LCPUFA produced. Changes in LCPUFA output could impact functionality of ice-edge and estuarine ecosystems, impacting shorebird migration and consumer productivity. Research is scarce on marine consumer reproduction and growth comparing quantity vs. quality of ingested saturated, monounsaturated, and omega-3 LCPUFAs, and nonexistent for seabirds and shorebirds. Future studies of marine food webs should include the role of diatoms and their contribution of not just energy, but also LCPUFAs to the food web.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference267 articles.

1. A framework for monitoring the status of populations: An example from wader populations in the East Asian–Australasian flyway

2. Arts MT, Kohler CC (2009) Health and condition in fish: the influence of lipids on membrane competency and immune response. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, New York, NY, p 237-256

3. "Essential fatty acids" in aquatic ecosystems: a crucial link between diet and human health and evolution

4. Arts MT, Brett MT, Kainz MJ (2009) Lipids in Aquatic Ecosystems. Springer, New York, NY

5. Influence of Abiotic Factors and Prey Distribution on Diet and Reproductive Success of Three Seabird Species in Alaska

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3