Age determination in the icefish Pseudochaenichthys georgianus (Channichthyidae) based on multiple methods using otoliths

Author:

Traczyk R1,Meyer-Rochow VB23,Hughes RM45

Affiliation:

1. University of Gdańsk, Department of Oceanography and Geography, 81-378 Gdynia, Poland

2. Department of Ecology and Genetics, Oulu University, 90140 Oulu, Finland

3. Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea

4. Amnis Opes Institute, Corvallis, Oregon 97333, USA

5. Department of Fisheries & Wildlife, Oregon State University, Corvallis, Oregon 97331, USA

Abstract

Aging Antarctic icefish is difficult because of their lack of scales and poorly calcified bones. Icefish ages must therefore be estimated from otoliths. We describe a method of reading daily micro-increments in connection with shape, size and mass analyses of the otoliths of the South Georgia icefish Pseudochaenichthys georgianus. Changes in otolith morphology and mass correlate with fish size and age group. The otolith micro-increment analysis is capable of establishing the age of an icefish by relating the daily micro-increment count to the life history of the fish. Micro-increment measurements and analyses are relatively simple to do by light and scanning electron microscopy and by using micro-densitometer and digitizing equipment. Drastic changes in the life history of an individual are reflected by measurable changes in its otolith micro-increment data as seen in our analyses of age groups 0-VI. The initial drastic change in daily micro-increment shapes and periodicities occur in connection with the hatching period of the icefish. The next drastic change in otolith shape and daily micro-increments occurs when ~7 cm long fish shift from pelagic to benthic habitats. As the fish age beyond group III, individual otolith variability lessens until they begin spawning. Our results indicate a single population of P. georgianus between the Antarctic Peninsula and South Georgia.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3