Modeling grazer-mediated effects of demographic and material connectivity on giant kelp metapopulation dynamics

Author:

Detmer AR1

Affiliation:

1. Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA

Abstract

From dispersal-based metapopulations to meta-ecosystems that arise from flows of non-living materials, spatial connectivity is a major driver of population dynamics. One potentially important process is material transport between populations also linked by individual dispersal. Here, I explored material and demographic connectivity in metapopulations of giant kelp Macrocystis pyrifera, a foundation species that produces both detritus and reproductive spores. Kelp detritus (drift) subsidizes grazers, helping maintain the kelp forest ecosystem state. Drift could potentially be exchanged among kelp patches, but this is less studied than spore dispersal. Therefore, I built an ordinary differential equation (ODE) model to investigate conditions under which drift and/or spore connectivity promotes the kelp forest state. I fit statistical models (generalized linear mixed models, GLMMs) to observational data and used the GLMM’s predictions to validate the ODE model. My results suggest kelp patch dynamics are best explained by connectivity of both drift and spores, and that the impacts of these forms of connectivity depend on local grazer (urchin) abundance. Both models predicted greater kelp persistence in well-connected patches across a range of urchin densities. These effects were largely driven by drift, which reduced grazing in recipient patches and thereby enhanced spore recruitment. While testing these predictions will require greater empirical quantification of interpatch drift transport, my findings indicate drift connectivity may be an important spatial process in kelp forest systems. More broadly, this work highlights the role of meta-ecosystem dynamics within a single ecosystem type, reinforcing the need to expand traditional metapopulation perspectives to consider multiple forms of spatial connectivity.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3