Effects of increasing temperature on the photosynthetic activity and oxygen balance of sheath-covered seagrass Zostera marina seeds

Author:

Brodersen KE1,Pedersen MF1

Affiliation:

1. Environmental Dynamics, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark

Abstract

The seed sheaths of eelgrass Zostera marina L. have recently been shown to possess photosynthetic capacity that can alleviate intra-seed hypoxic conditions and thereby enhance biosynthetic activity. However, nothing is known about how increasing seawater temperatures affect physiological responses in developing Z. marina seeds. We used an optical multi-analyte sensor system in combination with O2-sensitive sensor spots to measure rates of photosynthesis and dark respiration within custom-made gas exchange chambers. Exponential saturation models were then applied to determine key photosynthetic parameters, such as maximum photosynthesis rate, light use efficiency, saturating photon irradiance (EK), compensation photon irradiance, and net diel O2 budget. Our results showed that both photosynthetic activity and dark respiration rates in sheath-covered seeds increased with increasing seawater temperature (from 10 to 25°C) but with a 2-fold stronger response in dark respiration than in gross photosynthesis over the measured temperature range. These temperature responses resulted in increasing light requirements (from 47 to 183 µmol photons m-2 s-1 in EK) and decreasing net diel O2 budgets (from -5.4 to -126 nmol O2 mg wet weight [WW]-1 h-1) of the eelgrass seeds with increasing temperature. Eelgrass seed exposure to high temperature led thus to highly reduced net diel O2 balances, which is expected to have detrimental effects on seed development and germination success owing to negative effects on synthesis rates of storage products in the endosperm.

Publisher

Inter-Research Science Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3