Combined models of growth, waste production, dispersal and deposition from cage-cultured Atlantic salmon to predict benthic enrichment

Author:

Hargrave BT1,Filgueira R2,Grant J3,Law BA4

Affiliation:

1. 61 Balmy Beach Road, Owen Sound, ON N4K 5N4, Canada

2. Marine Affairs Program, Dalhousie University, 1355 Oxford St., PO Box 15000, Halifax, NS B3H 1R2, Canada

3. Department of Oceanography, Dalhousie University, Halifax, NS B3H 4J1, Canada

4. Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada

Abstract

Models of particulate waste production and deposition can be used in performance-based management approaches as cost-effective tools to assess environmental effects of open-pen finfish aquaculture. XLDEPMOD is an MS Excel® spreadsheet-based depositional model for predicting particulate organic carbon (POC) waste production and sedimentation from net-pen cultured finfish. Calculations are based on temperature-dependent fish growth and mass-balance calculations of feed input, growth, respiration and 3 size classes of feces. Depth-average and near-bottom directional currents are used to determine waste dispersion by fitted Gaussian distribution functions. Near-bottom velocity and substrate-based resuspension thresholds and loss of deposited waste due to decomposition and consumption by wild fish and invertebrates are used to calculate net POC sedimentation. The model was applied to 2 Atlantic salmon farms in southwestern Bay of Fundy, Canada. Sensitivity analysis showed that reduction in waste flux due to resuspension depends on the magnitude of current and wave-driven bottom shear and mass fractions of feces with different settling velocities. Depending on depth, current speed, substrate type and fecal mass fractions, resuspension can remove up to 80% of deposited waste from under net-pens. Steep gradients with high rates (>5 g POC m-2 d-1) of sedimentation predicted under and close to cages and lower rates (<1 g POC m-2 d-1) >50 m away are consistent with published DEPOMOD results and sediment trap observations at the farm sites. The model can be used by regulators to determine if acceptable environmental standards for benthic impacts due to waste deposition from salmon aquaculture are being maintained.

Publisher

Inter-Research Science Center

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3