The copepod Acartia sp. is more sensitive to a rapid pressure drop associated with seismic airguns than Calanus sp.

Author:

Vereide EH1,Khodabandeloo B1,de Jong K1

Affiliation:

1. Institute of Marine Research, Nykirkekaien 1, 5004 Bergen, Norway

Abstract

Airguns used in seismic surveys release high-pressure air, generating sound waves that may have adverse effects on marine life. However, knowledge of how seismic exposure impacts zooplankton is limited. One key characteristic of seismic signals that could potentially cause damage is a rapid pressure drop. In this study, the rapid pressure drop (~2 bar) was re-created in the laboratory using a pressure tube. To determine the range at which this drop occurs, the sound field around a seismic airgun array was modeled. The effects of this pressure drop on mortality and swimming behavior were tested in 2 common copepods, Acartia sp. and Calanus sp., both immediately and 5 h after treatment. Pressure-exposed Acartia sp. showed higher mortality rates (0 h: 5.6%; 5 h: 10%) compared to the controls, while mortality in Calanus sp. only increased after 5 h (3.3%). The swimming speed of pressure-exposed Acartia sp. (0 h: 0.49 mm s-1; 5 h: 0.52 mm s-1) was lower than in the control treatment, whereas the swimming speed in pressure-exposed Calanus sp. (2.64 mm s-1) only differed immediately after treatment. This study demonstrates that a rapid pressure drop can negatively affect zooplankton mortality and behavior at close range. The results also show that Acartia sp. is more sensitive to this pressure drop than Calanus sp., suggesting potential species-specific impacts from seismic exposure. Identifying the sound characteristics that can be harmful to zooplankton allows for a more accurate assessment of the most affected species and the range at which impacts can occur.

Publisher

Inter-Research Science Center

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3