Sustainable management of populations impacted by harvesting and climate change

Author:

Stenseth NC1,Ims RA2,Sæther BE3,Cadahía L1,Herfindal I3,Lee AM3,Whittington JD1,Yoccoz NG2

Affiliation:

1. Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway

2. Department of Arctic and Marine Biology, UiT the Arctic University of Norway, 9037 Tromsø, Norway

3. Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Abstract

The sustainable use of natural resources is critical for addressing the global challenges of today. Strategies for sustainable harvesting need to consider not only harvested species, but also other non-harvested species interacting with them in the same ecosystem. In addition, environmental variation needs to be considered, with climate change currently being one of the main sources of this variation. Understanding the consequences of complex interactions between different drivers and processes affecting dynamics of species and ecosystems across spatial scales requires large-scale integrative research projects. The Norwegian research initiative “Sustainable management of renewable resources in a changing environment: an integrated approach across ecosystems” (SUSTAIN) was launched to fill knowledge gaps related to the sustainable management of populations and ecosystems experiencing climate change. SUSTAIN investigated terrestrial, marine and freshwater ecosystems in boreal and Arctic regions, using both theoretical developments and empirical analyses of long-term data. This Climate Research Special contains both synthesis articles and original research exemplifying some of the approaches used in SUSTAIN. In this introduction we highlight 4 key topics addressed by SUSTAIN: (i) population structure, (ii) interactions between species, (iii) spatial processes, and (iv) adaptive management. These topics are fundamental to the understanding of harvested species from an ecosystem perspective, and to ecosystem-based management approaches, which we are striving to work towards.

Publisher

Inter-Research Science Center

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3