Metagenomic profile of caudal fin morphology of farmed red sea bream Pagrus major

Author:

Sawayama E1,Takahashi M1,Kitamura SI2

Affiliation:

1. Department of Marine Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan

2. Center for Marine Environmental Studies, Ehime University, Ehime 790-8577, Japan

Abstract

The morphology of farm-reared fish often differs from that of their wild counterparts, impacting their market value. Two caudal fin tip shapes, acutely angled and blunted, are recognized in farmed populations of red sea bream Pagrus major. The angled form is preferred by consumers over the blunt since it resembles that of wild fish. Discovering the cause of the blunted tip is crucial to maximizing the commercial value of farmed red sea bream. We hypothesized that the blunt fin tip is the result of opportunistic bacteria and conducted partial 16S rRNA metagenomic barcoding and generated a clone library of the 16S rRNA gene to compare bacterial communities of the 2 fin forms. Metagenomic barcoding revealed an abundance of 5 bacterial genera, Sulfitobacter, Vibrio, Tenacibaculum, Psychrobacter, and an unknown genus of Rhodobacteraceae, on the caudal fin surface. Sulfitobacter was significantly more common on the angled caudal fin than the blunted. Vibrio is the dominant genus on the blunted caudal fin. The clone library identified these genera to species level, and Sulfitobacter sp., Vibrio harveyi, Tenacibaculum maritimum, and Psychrobacter marincola were frequently observed in blunt caudal fins. Our results suggest that opportunistic pathogenic bacteria such as V. harveyi and T. maritimum are not the primary cause of caudal fin malformation, and multiple factors such as combinations of injury, stress, and pathogenic infection may be involved. The reason for the significantly greater occurrence of Sulfitobacter sp. in the angled caudal fin is unknown, and further investigation is needed.

Publisher

Inter-Research Science Center

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3