Bio-physical models for the management of micropathogens in Scottish aquaculture: a preliminary view to farming further offshore

Author:

Moriarty M1,Tulett D1,Rabe B1,Murray AG1

Affiliation:

1. Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, Scotland, UK

Abstract

Transmission of pathogens increases with population density associated with larger populations within farms and higher number of farms within an area. These pathogens can also spill over (or back) into wild populations. Owing to transmission between and from farms, many diseases are best managed at an area level. Current area management practice in Scotland was developed 20 yr ago, but as aquaculture evolves, farm size and environmental exposure will change. To assess if potential aquaculture management changes require spatial disease management changes, 3 scenarios for particle spread to help inform on pathogen transmission are evaluated: (1) current farm distribution, (2) medium-term development (farms in exposed coastal areas), and (3) long-term development (offshore farms). Climatological output from a hydrodynamic model is used to drive movements of passive particles representing infectious pathogens released from these farms. The potential distribution of particles allows assessment on possible transmission of infection, around farm locations, subject to various modelling assumptions and limitations. Dispersal distances increased with time in all scenarios. For medium-term development, the average dispersal distance (3.0 ± 1.3 km) was marginally larger than dispersal from existing sites (2.7 ± 1.6 km) after 12 h, whereas for the longer-term development, this was 4.8 ± 2.9 km. These results indicate that short- to medium-term aquaculture expansion is consistent with existing disease management areas, at least from these models. However, offshore aquaculture may result in transmission distances for pathogens that exceed existing limits, and therefore will likely require re-assessment of management areas, subject to consideration of all relevant epidemiological factors.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3