Spatiotemporal models highlight influence of oceanographic conditions on common dolphin bycatch risk in the Bay of Biscay

Author:

Gilbert L12,Rouby E12,Tew-Kaï E3,Spitz J12,Peltier H14,Quilfen V3,Authier M14

Affiliation:

1. Observatoire Pélagis, UMS 3462 Université de La Rochelle - CNRS, 17000 La Rochelle, France

2. Centre d’Etudes Biologiques de Chizé-La Rochelle, UMR7372 Université de la Rochelle - CNRS, 17000 La Rochelle, France

3. Shom, CS 92803-29228 Brest, France

4. ADERA SAS, CS 60040-33608 Pessac Cedex, France

Abstract

The population of short-beaked common dolphins Delphinus delphis of the Bay of Biscay (northeast Atlantic) has been subjected to potentially dangerous levels of bycatch since the 1990s. As the phenomenon intensifies, it represents a potent threat to the population. Here, we investigated the relationship between bycatch mortality and oceanographic processes. We assumed that oceanographic processes spatiotemporally structure the availability and aggregation of prey, creating areas prone to attract both common dolphins and fish targeted by fisheries. We used 2 datasets from 2012 to 2019: oceanographic data resulting from a circulation model and mortality data inferred from strandings. The latter allows location of mortality areas and quantification of the intensity of mortality events at sea. We fitted a series of spatiotemporal hierarchical Bayesian models using integrated nested Laplace approximations (INLA). Results provided first insights on how bycatch of common dolphins in the Bay of Biscay might be related to key seasonal and dynamic oceanographic features. We showed that from a statistical predictive point of view, the monthly trend of 2019 bycatch mortality could be predicted with few oceanographic covariates. This study highlights how gaining knowledge about environmental influences on interactions between short-beaked common dolphins and fisheries could have great conservation and management value. Identified relationships with oceanographic covariates were complex, as expected given the dynamic aspects of oceanographic processes, dolphins and fisheries distributions. Further research focusing on smaller time scales is needed to elucidate proximal drivers of common dolphin bycatch in the Bay of Biscay.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3