Reduction in overwinter body condition and size of Pacific sand lance has implications for piscivorous predators during marine heatwaves

Author:

Robinson CLK1,Bertram DF23,Shannon H4,von Biela VR5,Greentree W6,Duguid W6,Arimitsu ML7

Affiliation:

1. Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia V9T 6N7, Canada

2. Environment and Climate Change Canada, Institute of Ocean Sciences, Sidney, British Columbia V8L 4B2, Canada

3. Center for Wildlife Ecology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

4. Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, British Columbia V8L 4B2, Canada

5. US Geological Survey, Alaska Science Center, Anchorage, Alaska 99508, USA

6. Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada

7. US Geological Survey, Alaska Science Center, Juneau, Alaska 99801, USA

Abstract

Acute anomalous ocean warming events, including marine heatwaves (MHWs), have significant effects on reproduction and survival of piscivorous seabirds. Additionally, MHWs have negative effects on seabird fish prey, exacerbating these consequences and resulting in population implications for seabirds. We evaluated the relative body condition of Pacific sand lance Ammodytes personatus, an important seabird forage species, in Haro Strait, a highly productive region of southern British Columbia, Canada. We compared body condition and length of fish cohorts that experienced the 2016 MHW year (MHW cohorts) with fish hatched during 3 subsequent post MHW years (2017-2019). Age-0 MHW cohorts had a seasonal decline in body condition in age-0 fish from 100% in the summer to 81% in the winter, while age-1 fish showed a decline from summer-fall highs of 93.5% to wintertime low of 79.5%. In comparison, post MHW cohorts had a winter body condition that was 2-4 times higher than their MHW cohorts. Similar to previous studies in Alaska during the MHW, age-1 fish failed to grow and reach the typical size that distinguishes them from age-0 fish. Poor sand lance condition and growth in winter may explain the ramifications of a warming ocean for top predators, including seabirds and Pacific salmon, which depend on these prey fish in Haro Strait. Our results support the idea that Haro Strait, which is influenced by estuarine circulation resulting in cooler temperatures than surrounding areas, serves as a climate refugium for sand lance populations in summer and provides buffering capacity to ocean climate warming events.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3