Spatiotemporal variation in climatic conditions across ecosystems

Author:

Herfindal I1,Aanes S2,Benestad R3,Finstad AG4,Salthaug A5,Stenseth NC6,Sæther BE1

Affiliation:

1. Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway

2. Norwegian Computing Centre, 0314 Oslo, Norway

3. The Norwegian Meteorological Institute, 0313 Oslo, Norway

4. Centre for Biodiversity Dynamics, Department of Natural History, NTNU University Museum, 7491 Trondheim, Norway

5. Institute of Marine Research, 5817 Bergen, Norway

6. Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway

Abstract

Environmental variation in time and space affects biological processes such as extinction risk and speed of adaptation to environmental change. The spatial structure of environmental variation may vary among ecosystems, for instance due to differences in the flow of nutrients, genes and individuals. However, inferences about ecosystem spatial scale should also include spatial autocorrelation in environmental stochasticity, such as fluctuations in weather or climate. We used spatially structured time series (19-36 yr) on temperature from 4 different ecosystems (terrestrial, limnic, coastal sea and open ocean) to assess the spatiotemporal patterns of environmental variation over large geographical scales (up to 1900 km) during summer and winter. The distance of positive spatial autocorrelation in mean temperature was greatest for the terrestrial system (range: 592-622 km), and shorter for the open ocean (range: 472-414 km), coastal sea (range: 155-814 km) and the limnic systems (range: 51-324 km), suggesting a stronger spatial structure in environmental variation in the terrestrial system. The terrestrial system had high spatial synchrony in temperature (mean correlation: winter = 0.82, summer = 0.66) with a great spatial scaling (>650 km). Consequently, populations of terrestrial species experience similar environmental fluctuations even at distances up to 1000 km, compared to species in the aquatic systems (<500 km). There were clear seasonal differences in environmental synchrony in the terrestrial and limnic systems, but less so in the other systems. Our results suggest that biological processes affected by environmental stochasticity occur at the largest spatial scale in terrestrial systems, but their magnitude depends on whether the process is affected by winter or summer conditions.

Publisher

Inter-Research Science Center

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3