Assessment of sediment penetrability as an integrated in situ measure of intertidal softsediment conditions

Author:

Gerwing TG12,Barbeau MA3,Hamilton DJ4,Allen Gerwing AM5,Sinclair J6,Campbell L1,Davies MM2,Harvey B2,Juanes F1,Dudas SE17

Affiliation:

1. University of Victoria, Victoria, British Columbia V8P 5C2, Canada

2. Gulf Islands National Park Reserve, Parks Canada, Sidney, British Columbia V8L 2P6, Canada

3. University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada

4. Mount Allison University, Sackville, New Brunswick E4L 1E2, Canada

5. Sidney Museum, Sidney, British Columbia V8L 1X5, Canada

6. LGL Ltd., Sidney, British Columbia V8L 3Y8, Canada

7. Fisheries and Oceans Canada, Nanaimo, British Columbia V9T 6N7, Canada

Abstract

Infauna have an intimate relationship with the sediments they inhabit, and any study conducted upon infauna must, at the very least, describe sediment conditions. Common sediment assessments in intertidal systems include particle size distribution, as well as water and organic matter contents. These measures require extracting and processing a sediment core, and this disturbance may result in data that do not necessarily reflect in situ conditions. Sediment penetrability measured in situ using a penetrometer can circumvent this limitation. However, relationships between sediment penetrability and other sediment variables are poorly understood, especially in coastal systems. We evaluated the relationship between sediment penetrability and depth to the apparent redox potential discontinuity, mean particle size, organic matter content, and water content on tidal flats along the Pacific and Atlantic coasts of Canada. We also assessed whether adding penetrability into environmental models of the infaunal community improved model performance. We observed that while penetrability is statistically related to other sediment variables, relationships to covariates were weak. Further, inclusion of penetrability with other sediment variables improved the performance of models predicting infaunal community composition. Therefore, penetrability can be considered a separate variable, and contributes to an integrated assessment of environmental conditions experienced by biota. Finally, since we evaluated this method in different soft-sediment intertidal ecosystems (mudflats to sandflats), this method is applicable to a range of systems in other geographical areas.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3