Priority effects, environmental filtering and neutral coexistence explain large- to small-scale distribution of invasive sun corals in the SW Atlantic

Author:

Barbosa ACC1,Vinagre C23,Kitahara MV14,Flores AAV1

Affiliation:

1. Center for Marine Biology, University of São Paulo, 11612-109 São Sebastião, SP, Brazil

2. CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal

3. MARE - Marine and Environmental Sciences Centre, Universidade de Lisboa, Faculdade de Ciências, Campo Grande, 1749-016 Lisboa, Portugal

4. Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA

Abstract

Two sun coral species, Tubastraea tagusensis and T. coccinea, have successfully colonized reef habitats along the Southwest Atlantic. However, their invasive biology has been largely addressed without considering species-specific distribution patterns. Here, we assessed the distribution and abundance of Tubastraea spp. at vertical rocky reef sites within a number of islands along 120 km of coastline off the northern coast of São Paulo State, Brazil, to (1) investigate possible mechanisms underlying the invasion dynamics in the region, (2) test species-specific distributions according to a key environmental filter (depth), and (3) examine within-patch patterns to assess whether competition, niche-based or neutral processes are best candidates to modulate local species coexistence. Sun corals were found in the great majority of the studied locations, and the probability of finding them at any given reef site was estimated to be 0.54. There was substantial species segregation across locations, consistent with primary priority effects. Within locations, results suggest environmental filtering, with T. coccinea apparently advantaged in more hydrodynamic environments just below the surf zone. At sun coral patches with extensive co-occurrence of T. tagusensis and T. coccinea, the presence of each species can be, remarkably, modeled as an independent event, suggesting neutral coexistence. The spread of sun corals is an ongoing and increasingly invasive process that may be explained by the enemy-release hypothesis and the lack of negative interactions between Tubastraea species. The stochastic nature of small-scale distributions sets an additional challenge to predict (and thus control) sun coral invasion.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3