Different resiliencies in coral communities over ecological and geological time scales in American Samoa

Author:

Birkeland C1,Green A2,Lawrence A3,Coward G3,Vaeoso M3,Fenner D4

Affiliation:

1. Department of Biology, University of Hawaii at Manoa, 94-258 Olua Pl, Waipahu, Hawaii 96797, USA

2. Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

3. American Samoa Coral Reef Advisory Group, Department of Marine and Wildlife Resources, Pago Pago, American Samoa 96799, USA

4. Lynker Technologies, LLC, Contractor, NOAA Fisheries Service, Pacific Islands Regional Office, Honolulu, Hawaii 96799, USA

Abstract

In 1917, Alfred Mayor surveyed a 270 m transect on a reef flat on American Samoa. Eleven surveys were conducted on the transect from 1917 to 2019. The coral community on the reef crest was resilient over the century, occasionally being seriously damaged but always recovering rapidly. In contrast, the originally most dense coral community on the reef flat has been steadily deteriorating throughout the century. Resilience of coral communities in regions of high wave energy on the reef crests was associated with the important binding function of the crustose coralline alga (CCA) Porolithon onkodes. Successful coral recruits were found on CCA 94% of the time, yet living coral cover correlated negatively with CCA cover as they became alternative winners in competition. Mayor drilled a core from the transect on the surface to the basalt base of the reef 48 m below. Communities on Aua reef were dominated by scleractinians through the Holocene, while cores on another transect 2 km away showed the reef was occupied by alcyonaceans of the genus Sinularia, which built the massive reef with spiculite to the basalt base 37 m below. Despite periods of sea levels rising 9 to 15 times the rate of reef accretion, the reefs never drowned. The consistency of scleractinians on Aua reef and Sinularia on Utulei Reef 2 km away during the Holocene was because the shape of the bay allowed more water motion on Aua reef. After 10700 yr of reef building by octocorals, coastal construction terminated this spiculite-reef development.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3