Resource partitioning in hammerhead shark species out-migrating from coastal ecosystems in the Gulf of California

Author:

Besnard L1,Le Croizier G1,Galván-Magaña F2,Mathieu-Resuge M1,Kraffe E1,Martínez-Rincón RO3,Le Grand F1,Bideau A1,Schaal G1

Affiliation:

1. Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France

2. Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, 23096 La Paz, BCS, Mexico

3. CONACyT-Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. IPN 195, 23096 La Paz, BCS, Mexico

Abstract

Juveniles of large hammerhead shark species occupy coastal nurseries before migrating offshore to reproduce. In the central Gulf of California, artisanal elasmobranch fisheries have reported catches of juvenile scalloped Sphyrna lewini and smooth S. zygaena hammerhead sharks, but their local foraging habits are yet to be fully understood. In this study, the trophic niches of both hammerhead species as well as of sympatric Pacific sharpnose sharks Rhizoprionodon longurio were investigated using stable isotope values (δ13C, δ34S and δ15N) and fatty acid compositions in whole blood and muscle tissues. Despite interspecific similarities among trophic niches, smooth hammerheads were characterized by lower δ13C, higher δ34S and greater proportion of docosahexaenoic acid (DHA) in both tissues, suggesting they were already partly relying on offshore pelagic resources. For scalloped hammerheads, muscle reflected coastal dietary resources, while offshore trophic markers were detected in blood integrating prey signal over shorter time periods, indicating their more recent initiation of ontogenetic migration. Multidimensional niche calculation revealed low overlap between hammerhead shark trophic niches, implying that potential fine-scale differences in habitat use could reduce competition between these morphologically and ecologically similar species. In the meantime, the isotopic niches of juvenile scalloped and smooth hammerheads were smaller than that of Pacific sharpnose sharks, suggesting they could be more specialized consumers. Overall, the identification of foraging grounds for juvenile hammerhead sharks calls for a future characterization of their residency time in coastal ecosystems to further understand their interactions with fishing pressure in the Gulf of California.

Publisher

Inter-Research Science Center

Reference107 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3