Recruitment limitation increases susceptibility to fishing-induced collapse in a spawning aggregation fishery

Author:

Jarvis Mason ET12,Riecke TV3,Bellquist LF14,Pondella DJ II5,Semmens BX1

Affiliation:

1. Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA

2. Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA

3. Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59812, USA

4. California Oceans Program, The Nature Conservancy, San Diego, CA 92101, USA

5. Vantuna Research Group, Occidental College, Los Angeles, CA 90041, USA

Abstract

Spawning aggregation-based fisheries are notorious for booms and busts driven by aggregation discovery and subsequent fishing-induced collapse. However, environment-driven sporadic recruitment in some since-protected populations has delayed recovery, suggesting recruitment-limitation may be a key driver of their population dynamics and fishery recovery potential. To glean insight into this dynamic, we focused on an overexploited temperate aggregate spawner, barred sand bass Paralabrax nebulifer, and leveraged a long-term mark-recapture data set spanning different oceanographic and harvest histories in a custom Bayesian capture-mark-reencounter modeling framework. We coupled this demographic analysis with long-term trends in sea surface temperature, harvest, adult and juvenile densities, and historical accounts in the literature. Our results point to a history of multidecadal windows of fishing opportunity and fishing-induced collapse largely driven by sporadic, warm-water recruitment events, in which recruits may be externally sourced and local recruitment is negatively influenced by harvest. Following the last collapse, recruitment remained elevated due to novel, anomalously warm conditions. Despite signs of incipient population recovery, spawning aggregations remain absent, indicating that other potential factors (e.g. continued fishing during spawning season, Allee effects) have delayed fishery recovery to date. Recruitment-limited aggregate spawner populations, especially those at their geographic margins, are highly susceptible to sudden and potentially extended periods of collapse, making them ill-suited to high catch-per-unit-effort fishing that occurs on spawning grounds. If the goal is to balance protecting spawning aggregations with long-term fishery sustainability, then limiting aggregation-based fishing during the spawning season is likely the best insurance policy against collapse and recovery failure.

Publisher

Inter-Research Science Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3