Patterns, efficiency and ecosystem effects when fishing Calanus finmarchicus in the Norwegian Sea—using an individual-based model

Author:

Hansen C1,Skogen MD1,Rong Utne K1,Broms C1,Strand E1,Sætre Hjøllo S1

Affiliation:

1. Institute of Marine Research, 5817 Bergen, Norway

Abstract

Due to the important role of Calanus finmarchicus as key prey for the abundant pelagic fish stocks (Northeast Atlantic mackerel, Norwegian spring spawning herring, blue whiting) in the Norwegian Sea, an increase in the quota of C. finmarchicus has raised public concern. Here, 2 vessel types were implemented in an individual-based model within the NORWECOM.E2E ecosystem model, one ordinary vessel similar to the vessels used in the real fishery, the other with perfect knowledge of the C. finmarchicus distribution to account for possible future development of the fishery. The perfect vessels were free to move among all grid cells, whereas the other vessel type was restricted. Differences between the vessel types were large in terms of catch per unit effort and hotspots for catches. Operating with 10 perfect vessels, the catches were on average 54000 t yr-1, almost 3 times higher than for the ordinary vessels. Increasing to 60 perfect vessels, catches increased to 349000 t yr-1. The vessels with full knowledge of distribution and concentration located new hotspots distant from the traditional fishing grounds. Due to area restrictions in the current quota, allowing only 3000 t caught within the 1000 m depth contour, the perfect vessels shifted their activity offshore. In the simulated ecosystem, no ecosystem effects were found, neither on the C. finmarchicus biomass nor on the Norwegian spring spawning herring biomass. This finding indicates that the proposed quota of C. finmarchicus supports a sustainable fishery.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3