Elucidating trophic pathways of the most abundant fish larvae in northern Patagonia using δ13C and δ15N isotopes

Author:

Bernal Bajo A1,Castro LR1,Costalago D2

Affiliation:

1. Departamento de Oceanografía y Centro FONDAP COPAS-Sur Austral, Universidad de Concepción, Concepción, 4030000, Chile

2. Institute for the Oceans and Fisheries, University of British Columbia, Vancouver Campus, Vancouver, British Columbia V6T 1Z4, Canada

Abstract

The alternation of the classic and microbial food-webs in spring and winter, respectively, and the trespass towards higher trophic levels represented by fish early stages, are not well understood in Patagonia. These trophic routes were investigated in the inner Sea of Chiloe, an estuary of high ecological relevance in northern Patagonia. The isotopic values of δ13C and δ15N of ichthyoplankton and particulate organic matter were analyzed in late winter and spring 2017 to evaluate whether seasonal changes (e.g. in the composition of the freshwater discharge) were reflected in the isotopic signals of fish larvae. For this purpose, larvae of dominant fish species with contrasting feeding strategies were collected up to 100 m depth. The inshore zone of northern Patagonia was characterized by a dominance of marine carbon production, with increasing input of terrestrial organic matter during winter. δ13C values < -25 ‰ at the outermost estuary stations indicated the influence of allochthonous carbon exported from the inshore area in spring. The δ13C-larval signature of the species of the lightfish Maurolicus parvipinnis, the pipefish Leptonotus blainvilleanus, and the rockfish Sebastes oculatus followed the isotopic signature of the particulate organic matter in both seasons, at inshore and the exchange (outer) zone. Food partitioning was detected between species, with Merluccius spp. at the highest trophic position and L. blainvilleanus at the lowest. The fish larval community reached more diverse and higher δ15N values in winter, when larvae likely fed on prey items of higher trophic level, or instead when the food-web was partly sustained by microbial sources. Our results showed seasonal variations in δ13C values, suggesting differences in the source of organic carbon incorporated by the studied fish larvae. Moreover, trophic plasticity at larval stages may be an important characteristic of this type of estuarine environment.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3