Photosynthetic pigments of co-occurring Northeast Atlantic Laminaria spp. are unaffected by decomposition

Author:

Wright LS1,Foggo A1

Affiliation:

1. Marine Biology and Ecology Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

Abstract

Along Northeast Atlantic coasts, the genus Laminaria dominates kelp forests. Two species, L. digitata and L. hyperborea, are cold temperate whilst the third, L. ochroleuca, is warm temperate. In northern France and the southern British Isles, all 3 species now co-occur, with a gradual rise in predominance of L. ochroleuca evident over recent decades due to climate-driven range shifts. Despite recent focus on the export of photosynthetically viable macroalgal detritus, the effect of decomposition on detrital pigment concentration remains unknown for northern hemisphere kelps. Furthermore, notwithstanding their importance in determining habitat suitability, the photosynthetic pigments of all 3 species have not yet been assessed comparatively within the same forest. Here, we present results of a field experiment aimed to test potential changes in the pigments of decomposing kelp blade fragments. Using spectrophotometry and Gaussian peak spectral deconvolution to quantify pigments, we found that shallow benthic decomposition over 1 mo did not affect major photosynthetic pigment concentrations in any of the examined species. Moreover, the 2 boreal species were similar in their sporophyte pigment stoichiometry and had more chlorophyll a, chlorophyll c, fucoxanthin and minor carotenoids (β,β-carotene and zeaxanthin) than L. ochroleuca. This resulted in total pigment content that was 82 and 74% higher in L. digitata and L. hyperborea than in L. ochroleuca. These differences correspond approximately to each species’ latitudinal distribution and photosynthetic performance. Our results suggest photosynthetic viability of Northeast Atlantic kelp in the initial detrital phase and a potential reduction of forest-scale photosynthetic capacity under continued ocean warming.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3