Environmental conditions are poor predictors of immature white shark Carcharodon carcharias occurrences on coastal beaches of eastern Australia

Author:

Spaet JLY12,Manica A1,Brand CP3,Gallen C4,Butcher PA23

Affiliation:

1. Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK

2. National Marine Science Centre, Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales 2450, Australia

3. Fisheries NSW, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales 2450, Australia

4. Fisheries NSW, NSW Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, New South Wales 2315, Australia

Abstract

Understanding and predicting the distribution of organisms in heterogeneous environments is a fundamental ecological question and a requirement for sound management. To implement effective conservation strategies for white shark Carcharodon carcharias populations, it is imperative to define drivers of their movement and occurrence patterns and to protect critical habitats. Here, we acoustically tagged 444 immature white sharks and monitored their presence in relation to environmental factors over a 3 yr period (2016-2019) using an array of 21 iridium satellite-linked (VR4G) receivers spread along the coast of New South Wales, Australia. Results of generalized additive models showed that all tested predictors (month, time of day, water temperature, tidal height, swell height, lunar phase) had a significant effect on shark occurrence. However, collectively, these predictors only explained 1.8% of deviance, suggesting that statistical significance may be rooted in the large sample size rather than biological importance. On the other hand, receiver location, which captures geographic fidelity and local conditions not captured by the aforementioned environmental variables, explained a sizeable 17.3% of deviance. Sharks tracked in this study hence appear to be tolerant to episodic changes in environmental conditions, and movement patterns are likely related to currently undetermined, location-specific habitat characteristics or biological components, such as local currents, prey availability or competition. Importantly, we show that performance of VR4G receivers can be strongly affected by local environmental conditions, and provide an example of how a lack of range test controls can lead to misinterpretation and erroneous conclusions of acoustic detection data.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3