First winter energy allocation in juvenile sablefish Anoplopoma fimbria, a fast growing marine piscivore

Author:

Callahan MW1,Beaudreau AH1,Heintz R2,Mueter F1

Affiliation:

1. University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, 17101 Point Lena Loop Road, Juneau, AK 99801, USA

2. Sitka Sound Science Center, 834 Lincoln Street, Sitka, AK 99835, USA

Abstract

Understanding how energy allocation changes with ontogeny can provide insights about survival bottlenecks during early life stages for marine fishes. Energy allocation in juvenile fish before and during their critical first winter differs among species based on life history and foraging characteristics. To improve understanding of energy-size relationships in marine fish, we examined seasonal energy allocation in sablefish Anoplopoma fimbria, a species with unusually fast growth rates during early life. We assessed seasonal metrics of growth and energy storage in sablefish during their first 2 yr using field collections from 2016-2019. Based on growth rates estimated from length-frequency distributions, sablefish increased rapidly in size during autumn, and growth continued but slowed through their first winter as newly settled young-of-the-year. Mean energy density (ED, kJ g-1) declined over the winter, but total energy (TE, kJ ind.-1) increased significantly between October and March, reflecting positive overwinter growth. Relationships between energy storage and length were atypical for high-latitude marine fish in that they were steepest in March, indicating that relatively large fish grew during winter with minimal energy depletion, whereas relatively small fish grew but depleted their energy stores. We propose that improved foraging success for large fish may explain this pattern. Our results suggest that sablefish benefit from achieving large sizes prior to winter and support the hypothesis that the first winter can be a survival bottleneck for sablefish. This work informs our understanding of piscivore energy allocation during early life history and our understanding of possible sablefish recruitment drivers.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3