Warming-induced changes in reef fish community traits in the Southwestern Atlantic transition zone

Author:

Silva FC1,Floeter SR1,Lindegren M2,Quimbayo JP34

Affiliation:

1. Marine Macroecology and Biogeography Lab, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil

2. Centre for Ocean Life, National Inst. of Aquatic Resources (DTU-Aqua), Technical Univ. of Denmark, Kgs Lyngby 2800, Denmark

3. Center for Marine Biology, University of São Paulo, São Sebastião SP 11600-000, Brazil

4. Dept. of Evolution, Ecology, and Organismal Biology, The Ohio State Univ., Columbus, OH 43210, USA

Abstract

Marine communities are subject to alterations in environmental conditions, due to both natural variability and climate change. For instance, a rapid increase in sea surface temperature (SST) can modify spatial distribution patterns and abundances of reef fishes and therefore alter the overall diversity, structure, and functioning of these communities. Trait-based approaches may accurately detect community responses to such environmental changes, because species traits should reflect resource and habitat requirements. Here, we investigated temporal variability in reef fish trait composition and thermal affinity and assessed whether shifts are linked to recent ocean warming. We combined species traits related to feeding, growth, and survival with abundance data on reef fish from underwater visual census at 7 islands of the Southwestern Atlantic subtropical transition zone. All islands exhibited gradual trait reorganization from fish assemblages dominated by large-size species at the beginning of the time period to small, cryptobenthic species towards the end. The temporal changes in community weighted mean traits and the community thermal index were related to SST, indicating a numerical response of species to climatic variations. Tropical species are slowly becoming more abundant over time, while temperate species are becoming less abundant, reflecting an initial change in fish composition in this transition zone. These results have ecological implications leading communities to a faster turnover, lower food-chain complexity, and higher vulnerability to change. We highlight the importance of integrating traits and abundance time series data for a holistic understanding of reef dynamics and community responses to environmental variation, including global warming.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3